1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
//! Raw in-memory LZMA streams.
//!
//! The `Stream` type exported by this module is the primary type which performs
//! encoding/decoding of LZMA streams. Each `Stream` is either an encoder or
//! decoder and processes data in a streaming fashion.
use std::collections::LinkedList;
use std::error;
use std::fmt;
use std::io;
use std::mem;
use std::slice;
use lzma_sys;
/// Representation of an in-memory LZMA encoding or decoding stream.
///
/// Wraps the raw underlying `lzma_stream` type and provides the ability to
/// create streams which can either decode or encode various LZMA-based formats.
pub struct Stream {
raw: lzma_sys::lzma_stream,
}
unsafe impl Send for Stream {}
unsafe impl Sync for Stream {}
/// Options that can be used to configure how LZMA encoding happens.
///
/// This builder is consumed by a number of other methods.
pub struct LzmaOptions {
raw: lzma_sys::lzma_options_lzma,
}
/// Builder to create a multi-threaded stream encoder.
pub struct MtStreamBuilder {
raw: lzma_sys::lzma_mt,
filters: Option<Filters>,
}
/// A custom chain of filters to configure an encoding stream.
pub struct Filters {
inner: Vec<lzma_sys::lzma_filter>,
lzma_opts: LinkedList<lzma_sys::lzma_options_lzma>,
}
/// The `action` argument for `process`,
///
/// After the first use of SyncFlush, FullFlush, FullBarrier, or Finish, the
/// same `action' must is used until `process` returns `Status::StreamEnd`.
/// Also, the amount of input must not be modified by the application until
/// `process` returns `Status::StreamEnd`. Changing the `action' or modifying
/// the amount of input will make `process` return `Error::Program`.
#[derive(Copy, Clone)]
pub enum Action {
/// Continue processing
///
/// When encoding, encode as much input as possible. Some internal buffering
/// will probably be done (depends on the filter chain in use), which causes
/// latency: the input used won't usually be decodeable from the output of
/// the same `process` call.
///
/// When decoding, decode as much input as possible and produce as much
/// output as possible.
Run = lzma_sys::LZMA_RUN as isize,
/// Make all the input available at output
///
/// Normally the encoder introduces some latency. `SyncFlush` forces all the
/// buffered data to be available at output without resetting the internal
/// state of the encoder. This way it is possible to use compressed stream
/// for example for communication over network.
///
/// Only some filters support `SyncFlush`. Trying to use `SyncFlush` with
/// filters that don't support it will make `process` return
/// `Error::Options`. For example, LZMA1 doesn't support `SyncFlush` but
/// LZMA2 does.
///
/// Using `SyncFlush` very often can dramatically reduce the compression
/// ratio. With some filters (for example, LZMA2), fine-tuning the
/// compression options may help mitigate this problem significantly (for
/// example, match finder with LZMA2).
///
/// Decoders don't support `SyncFlush`.
SyncFlush = lzma_sys::LZMA_SYNC_FLUSH as isize,
/// Finish encoding of the current block.
///
/// All the input data going to the current block must have been given to
/// the encoder. Call `process` with `FullFlush` until it returns
/// `Status::StreamEnd`. Then continue normally with `Run` or finish the
/// Stream with `Finish`.
///
/// This action is currently supported only by stream encoder and easy
/// encoder (which uses stream encoder). If there is no unfinished block, no
/// empty block is created.
FullFlush = lzma_sys::LZMA_FULL_FLUSH as isize,
/// Finish encoding of the current block.
///
/// This is like `FullFlush` except that this doesn't necessarily wait until
/// all the input has been made available via the output buffer. That is,
/// `process` might return `Status::StreamEnd` as soon as all the input has
/// been consumed.
///
/// `FullBarrier` is useful with a threaded encoder if one wants to split
/// the .xz Stream into blocks at specific offsets but doesn't care if the
/// output isn't flushed immediately. Using `FullBarrier` allows keeping the
/// threads busy while `FullFlush` would make `process` wait until all the
/// threads have finished until more data could be passed to the encoder.
///
/// With a `Stream` initialized with the single-threaded
/// `new_stream_encoder` or `new_easy_encoder`, `FullBarrier` is an alias
/// for `FullFlush`.
FullBarrier = lzma_sys::LZMA_FULL_BARRIER as isize,
/// Finish the current operation
///
/// All the input data must have been given to the encoder (the last bytes
/// can still be pending in next_in). Call `process` with `Finish` until it
/// returns `Status::StreamEnd`. Once `Finish` has been used, the amount of
/// input must no longer be changed by the application.
///
/// When decoding, using `Finish` is optional unless the concatenated flag
/// was used when the decoder was initialized. When concatenated was not
/// used, the only effect of `Finish` is that the amount of input must not
/// be changed just like in the encoder.
Finish = lzma_sys::LZMA_FINISH as isize,
}
/// Return value of a `process` operation.
#[derive(Debug, Copy, Clone, PartialEq)]
pub enum Status {
/// Operation completed successfully.
Ok,
/// End of stream was reached.
///
/// When encoding, this means that a sync/full flush or `Finish` was
/// completed. When decoding, this indicates that all data was decoded
/// successfully.
StreamEnd,
/// If the TELL_ANY_CHECK flags is specified when constructing a decoder,
/// this informs that the `check` method will now return the underlying
/// integrity check algorithm.
GetCheck,
/// An error has not been encountered, but no progress is possible.
///
/// Processing can be continued normally by providing more input and/or more
/// output space, if possible.
///
/// Typically the first call to `process` that can do no progress returns
/// `Ok` instead of `MemNeeded`. Only the second consecutive call doing no
/// progress will return `MemNeeded`.
MemNeeded,
}
/// Possible error codes that can be returned from a processing operation.
#[derive(Debug, Clone, PartialEq)]
pub enum Error {
/// The underlying data was corrupt.
Data,
/// Invalid or unsupported options were specified.
Options,
/// File format wasn't recognized.
Format,
/// Memory usage limit was reached.
///
/// The memory limit can be increased with `set_memlimit`
MemLimit,
/// Memory couldn't be allocated.
Mem,
/// A programming error was encountered.
Program,
/// The `TELL_NO_CHECK` flag was specified and no integrity check was
/// available for this stream.
NoCheck,
/// The `TELL_UNSUPPORTED_CHECK` flag was specified and no integrity check
/// isn't implemented in this build of liblzma for this stream.
UnsupportedCheck,
}
/// Possible integrity checks that can be part of a .xz stream.
#[allow(missing_docs)] // self explanatory mostly
#[derive(Copy, Clone)]
pub enum Check {
None = lzma_sys::LZMA_CHECK_NONE as isize,
Crc32 = lzma_sys::LZMA_CHECK_CRC32 as isize,
Crc64 = lzma_sys::LZMA_CHECK_CRC64 as isize,
Sha256 = lzma_sys::LZMA_CHECK_SHA256 as isize,
}
/// Compression modes
///
/// This selects the function used to analyze the data produced by the match
/// finder.
#[derive(Copy, Clone)]
pub enum Mode {
/// Fast compression.
///
/// Fast mode is usually at its best when combined with a hash chain match
/// finder.
Fast = lzma_sys::LZMA_MODE_FAST as isize,
/// Normal compression.
///
/// This is usually notably slower than fast mode. Use this together with
/// binary tree match finders to expose the full potential of the LZMA1 or
/// LZMA2 encoder.
Normal = lzma_sys::LZMA_MODE_NORMAL as isize,
}
/// Match finders
///
/// Match finder has major effect on both speed and compression ratio. Usually
/// hash chains are faster than binary trees.
///
/// If you will use `SyncFlush` often, the hash chains may be a better choice,
/// because binary trees get much higher compression ratio penalty with
/// `SyncFlush`.
///
/// The memory usage formulas are only rough estimates, which are closest to
/// reality when dict_size is a power of two. The formulas are more complex in
/// reality, and can also change a little between liblzma versions.
#[derive(Copy, Clone)]
pub enum MatchFinder {
/// Hash Chain with 2- and 3-byte hashing
HashChain3 = lzma_sys::LZMA_MF_HC3 as isize,
/// Hash Chain with 2-, 3-, and 4-byte hashing
HashChain4 = lzma_sys::LZMA_MF_HC4 as isize,
/// Binary Tree with 2-byte hashing
BinaryTree2 = lzma_sys::LZMA_MF_BT2 as isize,
/// Binary Tree with 2- and 3-byte hashing
BinaryTree3 = lzma_sys::LZMA_MF_BT3 as isize,
/// Binary Tree with 2-, 3-, and 4-byte hashing
BinaryTree4 = lzma_sys::LZMA_MF_BT4 as isize,
}
/// A flag passed when initializing a decoder, causes `process` to return
/// `Status::GetCheck` as soon as the integrity check is known.
pub const TELL_ANY_CHECK: u32 = lzma_sys::LZMA_TELL_ANY_CHECK;
/// A flag passed when initializing a decoder, causes `process` to return
/// `Error::NoCheck` if the stream being decoded has no integrity check.
pub const TELL_NO_CHECK: u32 = lzma_sys::LZMA_TELL_NO_CHECK;
/// A flag passed when initializing a decoder, causes `process` to return
/// `Error::UnsupportedCheck` if the stream being decoded has an integrity check
/// that cannot be verified by this build of liblzma.
pub const TELL_UNSUPPORTED_CHECK: u32 = lzma_sys::LZMA_TELL_UNSUPPORTED_CHECK;
/// A flag passed when initializing a decoder, causes the decoder to ignore any
/// integrity checks listed.
pub const IGNORE_CHECK: u32 = lzma_sys::LZMA_TELL_UNSUPPORTED_CHECK;
/// A flag passed when initializing a decoder, indicates that the stream may be
/// multiple concatenated xz files.
pub const CONCATENATED: u32 = lzma_sys::LZMA_CONCATENATED;
impl Stream {
/// Initialize .xz stream encoder using a preset number
///
/// This is intended to be used by most for encoding data. The `preset`
/// argument is a number 0-9 indicating the compression level to use, and
/// normally 6 is a reasonable default.
///
/// The `check` argument is the integrity check to insert at the end of the
/// stream. The default of `Crc64` is typically appropriate.
pub fn new_easy_encoder(preset: u32, check: Check) -> Result<Stream, Error> {
unsafe {
let mut init = Stream { raw: mem::zeroed() };
cvt(lzma_sys::lzma_easy_encoder(
&mut init.raw,
preset,
check as lzma_sys::lzma_check,
))?;
Ok(init)
}
}
/// Initialize .lzma encoder (legacy file format)
///
/// The .lzma format is sometimes called the LZMA_Alone format, which is the
/// reason for the name of this function. The .lzma format supports only the
/// LZMA1 filter. There is no support for integrity checks like CRC32.
///
/// Use this function if and only if you need to create files readable by
/// legacy LZMA tools such as LZMA Utils 4.32.x. Moving to the .xz format
/// (the `new_easy_encoder` function) is strongly recommended.
///
/// The valid action values for `process` are `Run` and `Finish`. No kind
/// of flushing is supported, because the file format doesn't make it
/// possible.
pub fn new_lzma_encoder(options: &LzmaOptions) -> Result<Stream, Error> {
unsafe {
let mut init = Stream { raw: mem::zeroed() };
cvt(lzma_sys::lzma_alone_encoder(&mut init.raw, &options.raw))?;
Ok(init)
}
}
/// Initialize .xz Stream encoder using a custom filter chain
///
/// This function is similar to `new_easy_encoder` but a custom filter chain
/// is specified.
pub fn new_stream_encoder(filters: &Filters, check: Check) -> Result<Stream, Error> {
unsafe {
let mut init = Stream { raw: mem::zeroed() };
cvt(lzma_sys::lzma_stream_encoder(
&mut init.raw,
filters.inner.as_ptr(),
check as lzma_sys::lzma_check,
))?;
Ok(init)
}
}
/// Initialize a .xz stream decoder.
///
/// The maximum memory usage can be specified along with flags such as
/// `TELL_ANY_CHECK`, `TELL_NO_CHECK`, `TELL_UNSUPPORTED_CHECK`,
/// `TELL_IGNORE_CHECK`, or `CONCATENATED`.
pub fn new_stream_decoder(memlimit: u64, flags: u32) -> Result<Stream, Error> {
unsafe {
let mut init = Stream { raw: mem::zeroed() };
cvt(lzma_sys::lzma_stream_decoder(
&mut init.raw,
memlimit,
flags,
))?;
Ok(init)
}
}
/// Initialize a .lzma stream decoder.
///
/// The maximum memory usage can also be specified.
pub fn new_lzma_decoder(memlimit: u64) -> Result<Stream, Error> {
unsafe {
let mut init = Stream { raw: mem::zeroed() };
cvt(lzma_sys::lzma_alone_decoder(&mut init.raw, memlimit))?;
Ok(init)
}
}
/// Initialize a decoder which will choose a stream/lzma formats depending
/// on the input stream.
pub fn new_auto_decoder(memlimit: u64, flags: u32) -> Result<Stream, Error> {
unsafe {
let mut init = Stream { raw: mem::zeroed() };
cvt(lzma_sys::lzma_auto_decoder(&mut init.raw, memlimit, flags))?;
Ok(init)
}
}
/// Processes some data from input into an output buffer.
///
/// This will perform the appropriate encoding or decoding operation
/// depending on the kind of underlying stream. Documentation for the
/// various `action` arguments can be found on the respective variants.
pub fn process(
&mut self,
input: &[u8],
output: &mut [u8],
action: Action,
) -> Result<Status, Error> {
self.raw.next_in = input.as_ptr();
self.raw.avail_in = input.len();
self.raw.next_out = output.as_mut_ptr();
self.raw.avail_out = output.len();
let action = action as lzma_sys::lzma_action;
unsafe { cvt(lzma_sys::lzma_code(&mut self.raw, action)) }
}
/// Performs the same data as `process`, but places output data in a `Vec`.
///
/// This function will use the extra capacity of `output` as a destination
/// for bytes to be placed. The length of `output` will automatically get
/// updated after the operation has completed.
pub fn process_vec(
&mut self,
input: &[u8],
output: &mut Vec<u8>,
action: Action,
) -> Result<Status, Error> {
let cap = output.capacity();
let len = output.len();
unsafe {
let before = self.total_out();
let ret = {
let ptr = output.as_mut_ptr().offset(len as isize);
let out = slice::from_raw_parts_mut(ptr, cap - len);
self.process(input, out, action)
};
output.set_len((self.total_out() - before) as usize + len);
return ret;
}
}
/// Returns the total amount of input bytes consumed by this stream.
pub fn total_in(&self) -> u64 {
self.raw.total_in
}
/// Returns the total amount of bytes produced by this stream.
pub fn total_out(&self) -> u64 {
self.raw.total_out
}
/// Get the current memory usage limit.
///
/// This is only supported if the underlying stream supports a memlimit.
pub fn memlimit(&self) -> u64 {
unsafe { lzma_sys::lzma_memlimit_get(&self.raw) }
}
/// Set the current memory usage limit.
///
/// This can return `Error::MemLimit` if the new limit is too small or
/// `Error::Program` if this stream doesn't take a memory limit.
pub fn set_memlimit(&mut self, limit: u64) -> Result<(), Error> {
cvt(unsafe { lzma_sys::lzma_memlimit_set(&mut self.raw, limit) }).map(|_| ())
}
}
impl LzmaOptions {
/// Creates a new blank set of options for encoding.
///
/// The `preset` argument is the compression level to use, typically in the
/// range of 0-9.
pub fn new_preset(preset: u32) -> Result<LzmaOptions, Error> {
unsafe {
let mut options = LzmaOptions { raw: mem::zeroed() };
let ret = lzma_sys::lzma_lzma_preset(&mut options.raw, preset);
if ret != 0 {
Err(Error::Program)
} else {
Ok(options)
}
}
}
/// Configures the dictionary size, in bytes
///
/// Dictionary size indicates how many bytes of the recently processed
/// uncompressed data is kept in memory.
///
/// The minimum dictionary size is 4096 bytes and the default is 2^23, 8MB.
pub fn dict_size(&mut self, size: u32) -> &mut LzmaOptions {
self.raw.dict_size = size;
self
}
/// Configures the number of literal context bits.
///
/// How many of the highest bits of the previous uncompressed eight-bit byte
/// (also known as `literal') are taken into account when predicting the
/// bits of the next literal.
///
/// The maximum value to this is 4 and the default is 3. It is not currently
/// supported if this plus `literal_position_bits` is greater than 4.
pub fn literal_context_bits(&mut self, bits: u32) -> &mut LzmaOptions {
self.raw.lc = bits;
self
}
/// Configures the number of literal position bits.
///
/// This affects what kind of alignment in the uncompressed data is assumed
/// when encoding literals. A literal is a single 8-bit byte. See
/// `position_bits` for more information about alignment.
///
/// The default for this is 0.
pub fn literal_position_bits(&mut self, bits: u32) -> &mut LzmaOptions {
self.raw.lp = bits;
self
}
/// Configures the number of position bits.
///
/// Position bits affects what kind of alignment in the uncompressed data is
/// assumed in general. The default of 2 means four-byte alignment (2^ pb
/// =2^2=4), which is often a good choice when there's no better guess.
///
/// When the aligment is known, setting pb accordingly may reduce the file
/// size a little. E.g. with text files having one-byte alignment (US-ASCII,
/// ISO-8859-*, UTF-8), setting pb=0 can improve compression slightly. For
/// UTF-16 text, pb=1 is a good choice. If the alignment is an odd number
/// like 3 bytes, pb=0 might be the best choice.
///
/// Even though the assumed alignment can be adjusted with pb and lp, LZMA1
/// and LZMA2 still slightly favor 16-byte alignment. It might be worth
/// taking into account when designing file formats that are likely to be
/// often compressed with LZMA1 or LZMA2.
pub fn position_bits(&mut self, bits: u32) -> &mut LzmaOptions {
self.raw.pb = bits;
self
}
/// Configures the compression mode.
pub fn mode(&mut self, mode: Mode) -> &mut LzmaOptions {
self.raw.mode = mode as lzma_sys::lzma_mode;
self
}
/// Configures the nice length of a match.
///
/// This determines how many bytes the encoder compares from the match
/// candidates when looking for the best match. Once a match of at least
/// `nice_len` bytes long is found, the encoder stops looking for better
/// candidates and encodes the match. (Naturally, if the found match is
/// actually longer than `nice_len`, the actual length is encoded; it's not
/// truncated to `nice_len`.)
///
/// Bigger values usually increase the compression ratio and compression
/// time. For most files, 32 to 128 is a good value, which gives very good
/// compression ratio at good speed.
///
/// The exact minimum value depends on the match finder. The maximum is 273,
/// which is the maximum length of a match that LZMA1 and LZMA2 can encode.
pub fn nice_len(&mut self, len: u32) -> &mut LzmaOptions {
self.raw.nice_len = len;
self
}
/// Configures the match finder ID.
pub fn match_finder(&mut self, mf: MatchFinder) -> &mut LzmaOptions {
self.raw.mf = mf as lzma_sys::lzma_match_finder;
self
}
/// Maximum search depth in the match finder.
///
/// For every input byte, match finder searches through the hash chain or
/// binary tree in a loop, each iteration going one step deeper in the chain
/// or tree. The searching stops if
///
/// - a match of at least `nice_len` bytes long is found;
/// - all match candidates from the hash chain or binary tree have
/// been checked; or
/// - maximum search depth is reached.
///
/// Maximum search depth is needed to prevent the match finder from wasting
/// too much time in case there are lots of short match candidates. On the
/// other hand, stopping the search before all candidates have been checked
/// can reduce compression ratio.
///
/// Setting depth to zero tells liblzma to use an automatic default value,
/// that depends on the selected match finder and nice_len. The default is
/// in the range [4, 200] or so (it may vary between liblzma versions).
///
/// Using a bigger depth value than the default can increase compression
/// ratio in some cases. There is no strict maximum value, but high values
/// (thousands or millions) should be used with care: the encoder could
/// remain fast enough with typical input, but malicious input could cause
/// the match finder to slow down dramatically, possibly creating a denial
/// of service attack.
pub fn depth(&mut self, depth: u32) -> &mut LzmaOptions {
self.raw.depth = depth;
self
}
}
impl Check {
/// Test if this check is supported in this build of liblzma.
pub fn is_supported(&self) -> bool {
let ret = unsafe { lzma_sys::lzma_check_is_supported(*self as lzma_sys::lzma_check) };
ret != 0
}
}
impl MatchFinder {
/// Test if this match finder is supported in this build of liblzma.
pub fn is_supported(&self) -> bool {
let ret = unsafe { lzma_sys::lzma_mf_is_supported(*self as lzma_sys::lzma_match_finder) };
ret != 0
}
}
impl Filters {
/// Creates a new filter chain with no filters.
pub fn new() -> Filters {
Filters {
inner: vec![lzma_sys::lzma_filter {
id: lzma_sys::LZMA_VLI_UNKNOWN,
options: 0 as *mut _,
}],
lzma_opts: LinkedList::new(),
}
}
/// Add an LZMA1 filter.
///
/// LZMA1 is the very same thing as what was called just LZMA in LZMA Utils,
/// 7-Zip, and LZMA SDK. It's called LZMA1 here to prevent developers from
/// accidentally using LZMA when they actually want LZMA2.
///
/// LZMA1 shouldn't be used for new applications unless you _really_ know
/// what you are doing. LZMA2 is almost always a better choice.
pub fn lzma1(&mut self, opts: &LzmaOptions) -> &mut Filters {
self.lzma_opts.push_back(opts.raw);
let ptr = self.lzma_opts.back().unwrap() as *const _ as *mut _;
self.push(lzma_sys::lzma_filter {
id: lzma_sys::LZMA_FILTER_LZMA1,
options: ptr,
})
}
/// Add an LZMA2 filter.
///
/// Usually you want this instead of LZMA1. Compared to LZMA1, LZMA2 adds
/// support for `SyncFlush`, uncompressed chunks (smaller expansion when
/// trying to compress uncompressible data), possibility to change
/// `literal_context_bits`/`literal_position_bits`/`position_bits` in the
/// middle of encoding, and some other internal improvements.
pub fn lzma2(&mut self, opts: &LzmaOptions) -> &mut Filters {
self.lzma_opts.push_back(opts.raw);
let ptr = self.lzma_opts.back().unwrap() as *const _ as *mut _;
self.push(lzma_sys::lzma_filter {
id: lzma_sys::LZMA_FILTER_LZMA2,
options: ptr,
})
}
// TODO: delta filter
/// Add a filter for x86 binaries.
pub fn x86(&mut self) -> &mut Filters {
self.push(lzma_sys::lzma_filter {
id: lzma_sys::LZMA_FILTER_X86,
options: 0 as *mut _,
})
}
/// Add a filter for PowerPC binaries.
pub fn powerpc(&mut self) -> &mut Filters {
self.push(lzma_sys::lzma_filter {
id: lzma_sys::LZMA_FILTER_POWERPC,
options: 0 as *mut _,
})
}
/// Add a filter for IA-64 (itanium) binaries.
pub fn ia64(&mut self) -> &mut Filters {
self.push(lzma_sys::lzma_filter {
id: lzma_sys::LZMA_FILTER_IA64,
options: 0 as *mut _,
})
}
/// Add a filter for ARM binaries.
pub fn arm(&mut self) -> &mut Filters {
self.push(lzma_sys::lzma_filter {
id: lzma_sys::LZMA_FILTER_ARM,
options: 0 as *mut _,
})
}
/// Add a filter for ARM-Thumb binaries.
pub fn arm_thumb(&mut self) -> &mut Filters {
self.push(lzma_sys::lzma_filter {
id: lzma_sys::LZMA_FILTER_ARMTHUMB,
options: 0 as *mut _,
})
}
/// Add a filter for SPARC binaries.
pub fn sparc(&mut self) -> &mut Filters {
self.push(lzma_sys::lzma_filter {
id: lzma_sys::LZMA_FILTER_SPARC,
options: 0 as *mut _,
})
}
fn push(&mut self, filter: lzma_sys::lzma_filter) -> &mut Filters {
let pos = self.inner.len() - 1;
self.inner.insert(pos, filter);
self
}
}
impl MtStreamBuilder {
/// Creates a new blank builder to create a multithreaded encoding `Stream`.
pub fn new() -> MtStreamBuilder {
unsafe {
let mut init = MtStreamBuilder {
raw: mem::zeroed(),
filters: None,
};
init.raw.threads = 1;
return init;
}
}
/// Configures the number of worker threads to use
pub fn threads(&mut self, threads: u32) -> &mut Self {
self.raw.threads = threads;
self
}
/// Configures the maximum uncompressed size of a block
///
/// The encoder will start a new .xz block every `block_size` bytes.
/// Using `FullFlush` or `FullBarrier` with `process` the caller may tell
/// liblzma to start a new block earlier.
///
/// With LZMA2, a recommended block size is 2-4 times the LZMA2 dictionary
/// size. With very small dictionaries, it is recommended to use at least 1
/// MiB block size for good compression ratio, even if this is more than
/// four times the dictionary size. Note that these are only recommendations
/// for typical use cases; feel free to use other values. Just keep in mind
/// that using a block size less than the LZMA2 dictionary size is waste of
/// RAM.
///
/// Set this to 0 to let liblzma choose the block size depending on the
/// compression options. For LZMA2 it will be 3*`dict_size` or 1 MiB,
/// whichever is more.
///
/// For each thread, about 3 * `block_size` bytes of memory will be
/// allocated. This may change in later liblzma versions. If so, the memory
/// usage will probably be reduced, not increased.
pub fn block_size(&mut self, block_size: u64) -> &mut Self {
self.raw.block_size = block_size;
self
}
/// Timeout to allow `process` to return early
///
/// Multithreading can make liblzma to consume input and produce output in a
/// very bursty way: it may first read a lot of input to fill internal
/// buffers, then no input or output occurs for a while.
///
/// In single-threaded mode, `process` won't return until it has either
/// consumed all the input or filled the output buffer. If this is done in
/// multithreaded mode, it may cause a call `process` to take even tens of
/// seconds, which isn't acceptable in all applications.
///
/// To avoid very long blocking times in `process`, a timeout (in
/// milliseconds) may be set here. If `process would block longer than
/// this number of milliseconds, it will return with `Ok`. Reasonable
/// values are 100 ms or more. The xz command line tool uses 300 ms.
///
/// If long blocking times are fine for you, set timeout to a special
/// value of 0, which will disable the timeout mechanism and will make
/// `process` block until all the input is consumed or the output
/// buffer has been filled.
pub fn timeout_ms(&mut self, timeout: u32) -> &mut Self {
self.raw.timeout = timeout;
self
}
/// Compression preset (level and possible flags)
///
/// The preset is set just like with `Stream::new_easy_encoder`. The preset
/// is ignored if filters below have been specified.
pub fn preset(&mut self, preset: u32) -> &mut Self {
self.raw.preset = preset;
self
}
/// Configure a custom filter chain
pub fn filters(&mut self, filters: Filters) -> &mut Self {
self.raw.filters = filters.inner.as_ptr();
self.filters = Some(filters);
self
}
/// Configures the integrity check type
pub fn check(&mut self, check: Check) -> &mut Self {
self.raw.check = check as lzma_sys::lzma_check;
self
}
/// Calculate approximate memory usage of multithreaded .xz encoder
pub fn memusage(&self) -> u64 {
unsafe { lzma_sys::lzma_stream_encoder_mt_memusage(&self.raw) }
}
/// Initialize multithreaded .xz stream encoder.
pub fn encoder(&self) -> Result<Stream, Error> {
unsafe {
let mut init = Stream { raw: mem::zeroed() };
cvt(lzma_sys::lzma_stream_encoder_mt(&mut init.raw, &self.raw))?;
Ok(init)
}
}
}
fn cvt(rc: lzma_sys::lzma_ret) -> Result<Status, Error> {
match rc {
lzma_sys::LZMA_OK => Ok(Status::Ok),
lzma_sys::LZMA_STREAM_END => Ok(Status::StreamEnd),
lzma_sys::LZMA_NO_CHECK => Err(Error::NoCheck),
lzma_sys::LZMA_UNSUPPORTED_CHECK => Err(Error::UnsupportedCheck),
lzma_sys::LZMA_GET_CHECK => Ok(Status::GetCheck),
lzma_sys::LZMA_MEM_ERROR => Err(Error::Mem),
lzma_sys::LZMA_MEMLIMIT_ERROR => Err(Error::MemLimit),
lzma_sys::LZMA_FORMAT_ERROR => Err(Error::Format),
lzma_sys::LZMA_OPTIONS_ERROR => Err(Error::Options),
lzma_sys::LZMA_DATA_ERROR => Err(Error::Data),
lzma_sys::LZMA_BUF_ERROR => Ok(Status::MemNeeded),
lzma_sys::LZMA_PROG_ERROR => Err(Error::Program),
c => panic!("unknown return code: {}", c),
}
}
impl From<Error> for io::Error {
fn from(e: Error) -> io::Error {
let kind = match e {
Error::Data => std::io::ErrorKind::InvalidData,
Error::Options => std::io::ErrorKind::InvalidInput,
Error::Format => std::io::ErrorKind::InvalidData,
Error::MemLimit => std::io::ErrorKind::Other,
Error::Mem => std::io::ErrorKind::Other,
Error::Program => std::io::ErrorKind::Other,
Error::NoCheck => std::io::ErrorKind::InvalidInput,
Error::UnsupportedCheck => std::io::ErrorKind::Other,
};
io::Error::new(kind, e)
}
}
impl error::Error for Error {}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
Error::Data => "lzma data error",
Error::Options => "invalid options",
Error::Format => "stream/file format not recognized",
Error::MemLimit => "memory limit reached",
Error::Mem => "can't allocate memory",
Error::Program => "liblzma internal error",
Error::NoCheck => "no integrity check was available",
Error::UnsupportedCheck => "liblzma not built with check support",
}
.fmt(f)
}
}
impl Drop for Stream {
fn drop(&mut self) {
unsafe {
lzma_sys::lzma_end(&mut self.raw);
}
}
}