1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
//! Vendored and stripped down version of triomphe
use std::{
alloc::{self, Layout},
cmp::Ordering,
hash::{Hash, Hasher},
marker::PhantomData,
mem::{self, offset_of, ManuallyDrop},
ops::Deref,
ptr,
sync::atomic::{
self,
Ordering::{Acquire, Relaxed, Release},
},
};
/// A soft limit on the amount of references that may be made to an `Arc`.
///
/// Going above this limit will abort your program (although not
/// necessarily) at _exactly_ `MAX_REFCOUNT + 1` references.
const MAX_REFCOUNT: usize = (isize::MAX) as usize;
/// The object allocated by an Arc<T>
#[repr(C)]
pub(crate) struct ArcInner<T: ?Sized> {
pub(crate) count: atomic::AtomicUsize,
pub(crate) data: T,
}
unsafe impl<T: ?Sized + Sync + Send> Send for ArcInner<T> {}
unsafe impl<T: ?Sized + Sync + Send> Sync for ArcInner<T> {}
/// An atomically reference counted shared pointer
///
/// See the documentation for [`Arc`] in the standard library. Unlike the
/// standard library `Arc`, this `Arc` does not support weak reference counting.
///
/// [`Arc`]: https://doc.rust-lang.org/stable/std/sync/struct.Arc.html
#[repr(transparent)]
pub(crate) struct Arc<T: ?Sized> {
pub(crate) p: ptr::NonNull<ArcInner<T>>,
pub(crate) phantom: PhantomData<T>,
}
unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}
impl<T> Arc<T> {
/// Reconstruct the Arc<T> from a raw pointer obtained from into_raw()
///
/// Note: This raw pointer will be offset in the allocation and must be preceded
/// by the atomic count.
///
/// It is recommended to use OffsetArc for this
#[inline]
pub(crate) unsafe fn from_raw(ptr: *const T) -> Self {
// To find the corresponding pointer to the `ArcInner` we need
// to subtract the offset of the `data` field from the pointer.
let ptr = (ptr as *const u8).sub(offset_of!(ArcInner<T>, data));
Arc { p: ptr::NonNull::new_unchecked(ptr as *mut ArcInner<T>), phantom: PhantomData }
}
}
impl<T: ?Sized> Arc<T> {
#[inline]
fn inner(&self) -> &ArcInner<T> {
// This unsafety is ok because while this arc is alive we're guaranteed
// that the inner pointer is valid. Furthermore, we know that the
// `ArcInner` structure itself is `Sync` because the inner data is
// `Sync` as well, so we're ok loaning out an immutable pointer to these
// contents.
unsafe { &*self.ptr() }
}
// Non-inlined part of `drop`. Just invokes the destructor.
#[inline(never)]
unsafe fn drop_slow(&mut self) {
let _ = Box::from_raw(self.ptr());
}
/// Test pointer equality between the two Arcs, i.e. they must be the _same_
/// allocation
#[inline]
pub(crate) fn ptr_eq(this: &Self, other: &Self) -> bool {
std::ptr::addr_eq(this.ptr(), other.ptr())
}
pub(crate) fn ptr(&self) -> *mut ArcInner<T> {
self.p.as_ptr()
}
}
impl<T: ?Sized> Clone for Arc<T> {
#[inline]
fn clone(&self) -> Self {
// Using a relaxed ordering is alright here, as knowledge of the
// original reference prevents other threads from erroneously deleting
// the object.
//
// As explained in the [Boost documentation][1], Increasing the
// reference counter can always be done with memory_order_relaxed: New
// references to an object can only be formed from an existing
// reference, and passing an existing reference from one thread to
// another must already provide any required synchronization.
//
// [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
let old_size = self.inner().count.fetch_add(1, Relaxed);
// However we need to guard against massive refcounts in case someone
// is `mem::forget`ing Arcs. If we don't do this the count can overflow
// and users will use-after free. We racily saturate to `isize::MAX` on
// the assumption that there aren't ~2 billion threads incrementing
// the reference count at once. This branch will never be taken in
// any realistic program.
//
// We abort because such a program is incredibly degenerate, and we
// don't care to support it.
if old_size > MAX_REFCOUNT {
std::process::abort();
}
unsafe { Arc { p: ptr::NonNull::new_unchecked(self.ptr()), phantom: PhantomData } }
}
}
impl<T: ?Sized> Deref for Arc<T> {
type Target = T;
#[inline]
fn deref(&self) -> &T {
&self.inner().data
}
}
impl<T: ?Sized> Arc<T> {
/// Provides mutable access to the contents _if_ the `Arc` is uniquely owned.
#[inline]
pub(crate) fn get_mut(this: &mut Self) -> Option<&mut T> {
if this.is_unique() {
unsafe {
// See make_mut() for documentation of the threadsafety here.
Some(&mut (*this.ptr()).data)
}
} else {
None
}
}
/// Whether or not the `Arc` is uniquely owned (is the refcount 1?).
pub(crate) fn is_unique(&self) -> bool {
// See the extensive discussion in [1] for why this needs to be Acquire.
//
// [1] https://github.com/servo/servo/issues/21186
self.inner().count.load(Acquire) == 1
}
}
impl<T: ?Sized> Drop for Arc<T> {
#[inline]
fn drop(&mut self) {
// Because `fetch_sub` is already atomic, we do not need to synchronize
// with other threads unless we are going to delete the object.
if self.inner().count.fetch_sub(1, Release) != 1 {
return;
}
// FIXME(bholley): Use the updated comment when [2] is merged.
//
// This load is needed to prevent reordering of use of the data and
// deletion of the data. Because it is marked `Release`, the decreasing
// of the reference count synchronizes with this `Acquire` load. This
// means that use of the data happens before decreasing the reference
// count, which happens before this load, which happens before the
// deletion of the data.
//
// As explained in the [Boost documentation][1],
//
// > It is important to enforce any possible access to the object in one
// > thread (through an existing reference) to *happen before* deleting
// > the object in a different thread. This is achieved by a "release"
// > operation after dropping a reference (any access to the object
// > through this reference must obviously happened before), and an
// > "acquire" operation before deleting the object.
//
// [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
// [2]: https://github.com/rust-lang/rust/pull/41714
self.inner().count.load(Acquire);
unsafe {
self.drop_slow();
}
}
}
impl<T: ?Sized + PartialEq> PartialEq for Arc<T> {
fn eq(&self, other: &Arc<T>) -> bool {
Self::ptr_eq(self, other) || *(*self) == *(*other)
}
fn ne(&self, other: &Arc<T>) -> bool {
!Self::ptr_eq(self, other) && *(*self) != *(*other)
}
}
impl<T: ?Sized + PartialOrd> PartialOrd for Arc<T> {
fn partial_cmp(&self, other: &Arc<T>) -> Option<Ordering> {
(**self).partial_cmp(&**other)
}
fn lt(&self, other: &Arc<T>) -> bool {
*(*self) < *(*other)
}
fn le(&self, other: &Arc<T>) -> bool {
*(*self) <= *(*other)
}
fn gt(&self, other: &Arc<T>) -> bool {
*(*self) > *(*other)
}
fn ge(&self, other: &Arc<T>) -> bool {
*(*self) >= *(*other)
}
}
impl<T: ?Sized + Ord> Ord for Arc<T> {
fn cmp(&self, other: &Arc<T>) -> Ordering {
(**self).cmp(&**other)
}
}
impl<T: ?Sized + Eq> Eq for Arc<T> {}
impl<T: ?Sized + Hash> Hash for Arc<T> {
fn hash<H: Hasher>(&self, state: &mut H) {
(**self).hash(state)
}
}
#[derive(Debug, Eq, PartialEq, Hash, PartialOrd)]
#[repr(C)]
pub(crate) struct HeaderSlice<H, T: ?Sized> {
pub(crate) header: H,
length: usize,
slice: T,
}
impl<H, T> HeaderSlice<H, [T]> {
pub(crate) fn slice(&self) -> &[T] {
&self.slice
}
}
impl<H, T> Deref for HeaderSlice<H, [T; 0]> {
type Target = HeaderSlice<H, [T]>;
fn deref(&self) -> &Self::Target {
let len = self.length;
let fake_slice: *const [T] = ptr::slice_from_raw_parts(self as *const _ as *const T, len);
unsafe { &*(fake_slice as *const HeaderSlice<H, [T]>) }
}
}
/// A "thin" `Arc` containing dynamically sized data
///
/// This is functionally equivalent to `Arc<(H, [T])>`
///
/// When you create an `Arc` containing a dynamically sized type
/// like `HeaderSlice<H, [T]>`, the `Arc` is represented on the stack
/// as a "fat pointer", where the length of the slice is stored
/// alongside the `Arc`'s pointer. In some situations you may wish to
/// have a thin pointer instead, perhaps for FFI compatibility
/// or space efficiency.
///
/// Note that we use `[T; 0]` in order to have the right alignment for `T`.
///
/// `ThinArc` solves this by storing the length in the allocation itself,
/// via `HeaderSlice`.
#[repr(transparent)]
pub(crate) struct ThinArc<H, T> {
ptr: ptr::NonNull<ArcInner<HeaderSlice<H, [T; 0]>>>,
phantom: PhantomData<(H, T)>,
}
unsafe impl<H: Sync + Send, T: Sync + Send> Send for ThinArc<H, T> {}
unsafe impl<H: Sync + Send, T: Sync + Send> Sync for ThinArc<H, T> {}
// Synthesize a fat pointer from a thin pointer.
fn thin_to_thick<H, T>(
thin: *mut ArcInner<HeaderSlice<H, [T; 0]>>,
) -> *mut ArcInner<HeaderSlice<H, [T]>> {
let len = unsafe { (*thin).data.length };
let fake_slice: *mut [T] = ptr::slice_from_raw_parts_mut(thin as *mut T, len);
// Transplants metadata.
fake_slice as *mut ArcInner<HeaderSlice<H, [T]>>
}
impl<H, T> ThinArc<H, T> {
/// Temporarily converts |self| into a bonafide Arc and exposes it to the
/// provided callback. The refcount is not modified.
#[inline]
pub(crate) fn with_arc<F, U>(&self, f: F) -> U
where
F: FnOnce(&Arc<HeaderSlice<H, [T]>>) -> U,
{
// Synthesize transient Arc, which never touches the refcount of the ArcInner.
let transient = unsafe {
ManuallyDrop::new(Arc {
p: ptr::NonNull::new_unchecked(thin_to_thick(self.ptr.as_ptr())),
phantom: PhantomData,
})
};
// Expose the transient Arc to the callback, which may clone it if it wants.
let result = f(&transient);
// Forward the result.
result
}
/// Creates a `ThinArc` for a HeaderSlice using the given header struct and
/// iterator to generate the slice.
pub(crate) fn from_header_and_iter<I>(header: H, mut items: I) -> Self
where
I: Iterator<Item = T> + ExactSizeIterator,
{
assert_ne!(mem::size_of::<T>(), 0, "Need to think about ZST");
let num_items = items.len();
// Offset of the start of the slice in the allocation.
let inner_to_data_offset = offset_of!(ArcInner<HeaderSlice<H, [T; 0]>>, data);
let data_to_slice_offset = offset_of!(HeaderSlice<H, [T; 0]>, slice);
let slice_offset = inner_to_data_offset + data_to_slice_offset;
// Compute the size of the real payload.
let slice_size = mem::size_of::<T>().checked_mul(num_items).expect("size overflows");
let usable_size = slice_offset.checked_add(slice_size).expect("size overflows");
// Round up size to alignment.
let align = mem::align_of::<ArcInner<HeaderSlice<H, [T; 0]>>>();
let size = usable_size.wrapping_add(align - 1) & !(align - 1);
assert!(size >= usable_size, "size overflows");
let layout = Layout::from_size_align(size, align).expect("invalid layout");
let ptr: *mut ArcInner<HeaderSlice<H, [T; 0]>>;
unsafe {
let buffer = alloc::alloc(layout);
if buffer.is_null() {
alloc::handle_alloc_error(layout);
}
// // Synthesize the fat pointer. We do this by claiming we have a direct
// // pointer to a [T], and then changing the type of the borrow. The key
// // point here is that the length portion of the fat pointer applies
// // only to the number of elements in the dynamically-sized portion of
// // the type, so the value will be the same whether it points to a [T]
// // or something else with a [T] as its last member.
// let fake_slice: &mut [T] = slice::from_raw_parts_mut(buffer as *mut T, num_items);
// ptr = fake_slice as *mut [T] as *mut ArcInner<HeaderSlice<H, [T]>>;
ptr = buffer as *mut _;
let count = atomic::AtomicUsize::new(1);
// Write the data.
//
// Note that any panics here (i.e. from the iterator) are safe, since
// we'll just leak the uninitialized memory.
ptr::write(ptr::addr_of_mut!((*ptr).count), count);
ptr::write(ptr::addr_of_mut!((*ptr).data.header), header);
ptr::write(ptr::addr_of_mut!((*ptr).data.length), num_items);
if num_items != 0 {
let mut current = ptr::addr_of_mut!((*ptr).data.slice) as *mut T;
debug_assert_eq!(current as usize - buffer as usize, slice_offset);
for _ in 0..num_items {
ptr::write(
current,
items.next().expect("ExactSizeIterator over-reported length"),
);
current = current.offset(1);
}
assert!(items.next().is_none(), "ExactSizeIterator under-reported length");
// We should have consumed the buffer exactly.
debug_assert_eq!(current as *mut u8, buffer.add(usable_size));
}
assert!(items.next().is_none(), "ExactSizeIterator under-reported length");
}
ThinArc { ptr: unsafe { ptr::NonNull::new_unchecked(ptr) }, phantom: PhantomData }
}
}
impl<H, T> Deref for ThinArc<H, T> {
type Target = HeaderSlice<H, [T]>;
#[inline]
fn deref(&self) -> &Self::Target {
unsafe { &(*thin_to_thick(self.ptr.as_ptr())).data }
}
}
impl<H, T> Clone for ThinArc<H, T> {
#[inline]
fn clone(&self) -> Self {
ThinArc::with_arc(self, |a| Arc::into_thin(a.clone()))
}
}
impl<H, T> Drop for ThinArc<H, T> {
#[inline]
fn drop(&mut self) {
let _ = Arc::from_thin(ThinArc { ptr: self.ptr, phantom: PhantomData });
}
}
impl<H, T> Arc<HeaderSlice<H, [T]>> {
/// Converts an `Arc` into a `ThinArc`. This consumes the `Arc`, so the refcount
/// is not modified.
#[inline]
pub(crate) fn into_thin(a: Self) -> ThinArc<H, T> {
assert_eq!(a.length, a.slice.len(), "Length needs to be correct for ThinArc to work");
let fat_ptr: *mut ArcInner<HeaderSlice<H, [T]>> = a.ptr();
mem::forget(a);
let thin_ptr = fat_ptr as *mut [usize] as *mut usize;
ThinArc {
ptr: unsafe {
ptr::NonNull::new_unchecked(thin_ptr as *mut ArcInner<HeaderSlice<H, [T; 0]>>)
},
phantom: PhantomData,
}
}
/// Converts a `ThinArc` into an `Arc`. This consumes the `ThinArc`, so the refcount
/// is not modified.
#[inline]
pub(crate) fn from_thin(a: ThinArc<H, T>) -> Self {
let ptr = thin_to_thick(a.ptr.as_ptr());
mem::forget(a);
unsafe { Arc { p: ptr::NonNull::new_unchecked(ptr), phantom: PhantomData } }
}
}
impl<H: PartialEq, T: PartialEq> PartialEq for ThinArc<H, T> {
#[inline]
fn eq(&self, other: &ThinArc<H, T>) -> bool {
**self == **other
}
}
impl<H: Eq, T: Eq> Eq for ThinArc<H, T> {}
impl<H: Hash, T: Hash> Hash for ThinArc<H, T> {
fn hash<HSR: Hasher>(&self, state: &mut HSR) {
(**self).hash(state)
}
}