nom/
internal.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
//! Basic types to build the parsers

use self::Needed::*;
use crate::error::{self, ErrorKind, FromExternalError, ParseError};
use crate::lib::std::fmt;
use core::marker::PhantomData;
use core::num::NonZeroUsize;

/// Holds the result of parsing functions
///
/// It depends on the input type `I`, the output type `O`, and the error type `E`
/// (by default `(I, nom::ErrorKind)`)
///
/// The `Ok` side is a pair containing the remainder of the input (the part of the data that
/// was not parsed) and the produced value. The `Err` side contains an instance of `nom::Err`.
///
/// Outside of the parsing code, you can use the [Finish::finish] method to convert
/// it to a more common result type
pub type IResult<I, O, E = error::Error<I>> = Result<(I, O), Err<E>>;

/// Helper trait to convert a parser's result to a more manageable type
pub trait Finish<I, O, E> {
  /// converts the parser's result to a type that is more consumable by error
  /// management libraries. It keeps the same `Ok` branch, and merges `Err::Error`
  /// and `Err::Failure` into the `Err` side.
  ///
  /// *warning*: if the result is `Err(Err::Incomplete(_))`, this method will panic.
  /// - "complete" parsers: It will not be an issue, `Incomplete` is never used
  /// - "streaming" parsers: `Incomplete` will be returned if there's not enough data
  ///   for the parser to decide, and you should gather more data before parsing again.
  ///   Once the parser returns either `Ok(_)`, `Err(Err::Error(_))` or `Err(Err::Failure(_))`,
  ///   you can get out of the parsing loop and call `finish()` on the parser's result
  fn finish(self) -> Result<(I, O), E>;
}

impl<I, O, E> Finish<I, O, E> for IResult<I, O, E> {
  fn finish(self) -> Result<(I, O), E> {
    match self {
      Ok(res) => Ok(res),
      Err(Err::Error(e)) | Err(Err::Failure(e)) => Err(e),
      Err(Err::Incomplete(_)) => {
        panic!("Cannot call `finish()` on `Err(Err::Incomplete(_))`: this result means that the parser does not have enough data to decide, you should gather more data and try to reapply the parser instead")
      }
    }
  }
}

/// Contains information on needed data if a parser returned `Incomplete`
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub enum Needed {
  /// Needs more data, but we do not know how much
  Unknown,
  /// Contains the required data size in bytes
  Size(NonZeroUsize),
}

impl Needed {
  /// Creates `Needed` instance, returns `Needed::Unknown` if the argument is zero
  pub fn new(s: usize) -> Self {
    match NonZeroUsize::new(s) {
      Some(sz) => Needed::Size(sz),
      None => Needed::Unknown,
    }
  }

  /// Indicates if we know how many bytes we need
  pub fn is_known(&self) -> bool {
    *self != Unknown
  }

  /// Maps a `Needed` to `Needed` by applying a function to a contained `Size` value.
  #[inline]
  pub fn map<F: Fn(NonZeroUsize) -> usize>(self, f: F) -> Needed {
    match self {
      Unknown => Unknown,
      Size(n) => Needed::new(f(n)),
    }
  }
}

/// The `Err` enum indicates the parser was not successful
///
/// It has three cases:
///
/// * `Incomplete` indicates that more data is needed to decide. The `Needed` enum
///   can contain how many additional bytes are necessary. If you are sure your parser
///   is working on full data, you can wrap your parser with the `complete` combinator
///   to transform that case in `Error`
/// * `Error` means some parser did not succeed, but another one might (as an example,
///   when testing different branches of an `alt` combinator)
/// * `Failure` indicates an unrecoverable error. For example, when a prefix has been
///   recognised and the next parser has been confirmed, if that parser fails, then the
///   entire process fails; there are no more parsers to try.
///
/// Distinguishing `Failure` this from `Error` is only relevant inside the parser's code. For
/// external consumers, both mean that parsing failed.
///
/// See also: [`Finish`].
///
#[derive(Debug, Clone, PartialEq)]
pub enum Err<Failure, Error = Failure> {
  /// There was not enough data
  Incomplete(Needed),
  /// The parser had an error (recoverable)
  Error(Error),
  /// The parser had an unrecoverable error: we got to the right
  /// branch and we know other branches won't work, so backtrack
  /// as fast as possible
  Failure(Failure),
}

impl<E> Err<E> {
  /// Tests if the result is Incomplete
  pub fn is_incomplete(&self) -> bool {
    matches!(self, Err::Incomplete(..))
  }

  /// Applies the given function to the inner error
  pub fn map<E2, F>(self, f: F) -> Err<E2>
  where
    F: FnOnce(E) -> E2,
  {
    match self {
      Err::Incomplete(n) => Err::Incomplete(n),
      Err::Failure(t) => Err::Failure(f(t)),
      Err::Error(t) => Err::Error(f(t)),
    }
  }

  /// Automatically converts between errors if the underlying type supports it
  pub fn convert<F>(e: Err<F>) -> Self
  where
    E: From<F>,
  {
    e.map(crate::lib::std::convert::Into::into)
  }
}

impl<T> Err<(T, ErrorKind)> {
  /// Maps `Err<(T, ErrorKind)>` to `Err<(U, ErrorKind)>` with the given `F: T -> U`
  pub fn map_input<U, F>(self, f: F) -> Err<(U, ErrorKind)>
  where
    F: FnOnce(T) -> U,
  {
    match self {
      Err::Incomplete(n) => Err::Incomplete(n),
      Err::Failure((input, k)) => Err::Failure((f(input), k)),
      Err::Error((input, k)) => Err::Error((f(input), k)),
    }
  }
}

impl<T> Err<error::Error<T>> {
  /// Maps `Err<error::Error<T>>` to `Err<error::Error<U>>` with the given `F: T -> U`
  pub fn map_input<U, F>(self, f: F) -> Err<error::Error<U>>
  where
    F: FnOnce(T) -> U,
  {
    match self {
      Err::Incomplete(n) => Err::Incomplete(n),
      Err::Failure(error::Error { input, code }) => Err::Failure(error::Error {
        input: f(input),
        code,
      }),
      Err::Error(error::Error { input, code }) => Err::Error(error::Error {
        input: f(input),
        code,
      }),
    }
  }
}

#[cfg(feature = "alloc")]
use crate::lib::std::{borrow::ToOwned, string::String, vec::Vec};
#[cfg(feature = "alloc")]
impl Err<(&[u8], ErrorKind)> {
  /// Obtaining ownership
  #[cfg_attr(feature = "docsrs", doc(cfg(feature = "alloc")))]
  pub fn to_owned(self) -> Err<(Vec<u8>, ErrorKind)> {
    self.map_input(ToOwned::to_owned)
  }
}

#[cfg(feature = "alloc")]
impl Err<(&str, ErrorKind)> {
  /// Obtaining ownership
  #[cfg_attr(feature = "docsrs", doc(cfg(feature = "alloc")))]
  pub fn to_owned(self) -> Err<(String, ErrorKind)> {
    self.map_input(ToOwned::to_owned)
  }
}

#[cfg(feature = "alloc")]
impl Err<error::Error<&[u8]>> {
  /// Obtaining ownership
  #[cfg_attr(feature = "docsrs", doc(cfg(feature = "alloc")))]
  pub fn to_owned(self) -> Err<error::Error<Vec<u8>>> {
    self.map_input(ToOwned::to_owned)
  }
}

#[cfg(feature = "alloc")]
impl Err<error::Error<&str>> {
  /// Obtaining ownership
  #[cfg_attr(feature = "docsrs", doc(cfg(feature = "alloc")))]
  pub fn to_owned(self) -> Err<error::Error<String>> {
    self.map_input(ToOwned::to_owned)
  }
}

impl<E: Eq> Eq for Err<E> {}

impl<E> fmt::Display for Err<E>
where
  E: fmt::Debug,
{
  fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
    match self {
      Err::Incomplete(Needed::Size(u)) => write!(f, "Parsing requires {} bytes/chars", u),
      Err::Incomplete(Needed::Unknown) => write!(f, "Parsing requires more data"),
      Err::Failure(c) => write!(f, "Parsing Failure: {:?}", c),
      Err::Error(c) => write!(f, "Parsing Error: {:?}", c),
    }
  }
}

#[cfg(feature = "std")]
use std::error::Error;

#[cfg(feature = "std")]
impl<E> Error for Err<E>
where
  E: fmt::Debug,
{
  fn source(&self) -> Option<&(dyn Error + 'static)> {
    None // no underlying error
  }
}

/// Parser mode: influences how combinators build values
///
/// the [Parser] trait is generic over types implementing [Mode]. Its method are
/// called to produce and manipulate output values or errors.
///
/// The main implementations of this trait are:
/// * [Emit]: produce a value
/// * [Check]: apply the parser but do not generate a value
pub trait Mode {
  /// The output type that may be generated
  type Output<T>;

  /// Produces a value
  fn bind<T, F: FnOnce() -> T>(f: F) -> Self::Output<T>;

  /// Applies a function over the produced value
  fn map<T, U, F: FnOnce(T) -> U>(x: Self::Output<T>, f: F) -> Self::Output<U>;

  /// Combines two values generated by previous parsers
  fn combine<T, U, V, F: FnOnce(T, U) -> V>(
    x: Self::Output<T>,
    y: Self::Output<U>,
    f: F,
  ) -> Self::Output<V>;
}

/// Produces a value. This is the default behaviour for parsers
pub struct Emit;
impl Mode for Emit {
  type Output<T> = T;

  #[inline(always)]
  fn bind<T, F: FnOnce() -> T>(f: F) -> Self::Output<T> {
    f()
  }

  #[inline(always)]
  fn map<T, U, F: FnOnce(T) -> U>(x: Self::Output<T>, f: F) -> Self::Output<U> {
    f(x)
  }

  #[inline(always)]
  fn combine<T, U, V, F: FnOnce(T, U) -> V>(
    x: Self::Output<T>,
    y: Self::Output<U>,
    f: F,
  ) -> Self::Output<V> {
    f(x, y)
  }
}

/// Applies the parser, but do not a produce a value
///
/// This has the effect of greatly reducing the amount of code generated and the
/// parser memory usage. Some combinators check for an error in a child parser but
/// discard the error, and for those, using [Check] makes sure the error is not
/// even generated, only the fact that an error happened remains
pub struct Check;
impl Mode for Check {
  type Output<T> = ();

  #[inline(always)]
  fn bind<T, F: FnOnce() -> T>(_: F) -> Self::Output<T> {}

  #[inline(always)]
  fn map<T, U, F: FnOnce(T) -> U>(_: Self::Output<T>, _: F) -> Self::Output<U> {}

  #[inline(always)]
  fn combine<T, U, V, F: FnOnce(T, U) -> V>(
    _: Self::Output<T>,
    _: Self::Output<U>,
    _: F,
  ) -> Self::Output<V> {
  }
}

/// Parser result type
///
/// * `Ok` branch: a tuple of the remaining input data, and the output value.
///   The output value is of the `O` type if the output mode was [Emit], and `()`
///   if the mode was [Check]
/// * `Err` branch: an error of the `E` type if the erroor mode was [Emit], and `()`
///   if the mode was [Check]
pub type PResult<OM, I, O, E> = Result<
  (I, <<OM as OutputMode>::Output as Mode>::Output<O>),
  Err<E, <<OM as OutputMode>::Error as Mode>::Output<E>>,
>;

/// Trait Defining the parser's execution
///
/// The same parser implementation can vary in behaviour according to the chosen
/// output mode
pub trait OutputMode {
  /// Defines the [Mode] for the output type. [Emit] will generate the value, [Check] will
  /// apply the parser but will only generate `()` if successful. This can be used when
  /// verifying that the input data conforms to the format without having to generate any
  /// output data
  type Output: Mode;
  /// Defines the [Mode] for the output type. [Emit] will generate the value, [Check] will
  /// apply the parser but will only generate `()` if an error happened. [Emit] should be
  /// used when we want to handle the error and extract useful information from it. [Check]
  /// is used when we just want to know if parsing failed and reject the data quickly.
  type Error: Mode;
  /// Indicates whether the input data is "complete", ie we already have the entire data in the
  /// buffer, or if it is "streaming", where more data can be added later in the buffer. In
  /// streaming mode, the parser will understand that a failure may mean that we are missing
  /// data, and will return a specific error branch, [Err::Incomplete] to signal it. In complete
  /// mode, the parser will generate a normal error
  type Incomplete: IsStreaming;
}

/// Specifies the behaviour when a parser encounters an error that could be due to partial ata
pub trait IsStreaming {
  /// called by parsers on partial data errors
  /// * `needed` can hold the amount of additional data the parser would need to decide
  /// * `err_f`: produces the error when in "complete" mode
  fn incomplete<E, F: FnOnce() -> E>(needed: Needed, err_f: F) -> Err<E>;
  /// Indicates whether the data is in streaming mode or not
  fn is_streaming() -> bool;
}

/// Indicates that the input data is streaming: more data may be available later
pub struct Streaming;

impl IsStreaming for Streaming {
  fn incomplete<E, F: FnOnce() -> E>(needed: Needed, _err_f: F) -> Err<E> {
    Err::Incomplete(needed)
  }

  #[inline]
  fn is_streaming() -> bool {
    true
  }
}

/// Indicates that the input data is complete: no more data may be added later
pub struct Complete;

impl IsStreaming for Complete {
  fn incomplete<E, F: FnOnce() -> E>(_needed: Needed, err_f: F) -> Err<E> {
    Err::Error(err_f())
  }

  #[inline]
  fn is_streaming() -> bool {
    false
  }
}

/// Holds the parser execution modifiers: output [Mode], error [Mode] and
/// streaming behaviour for input data
pub struct OutputM<M: Mode, EM: Mode, S: IsStreaming> {
  m: PhantomData<M>,
  em: PhantomData<EM>,
  s: PhantomData<S>,
}

impl<M: Mode, EM: Mode, S: IsStreaming> OutputMode for OutputM<M, EM, S> {
  type Output = M;
  type Error = EM;
  type Incomplete = S;
}
/// All nom parsers implement this trait
pub trait Parser<Input> {
  /// Type of the produced value
  type Output;
  /// Error type of this parser
  type Error: ParseError<Input>;

  /// A parser takes in input type, and returns a `Result` containing
  /// either the remaining input and the output value, or an error
  #[inline]
  fn parse(&mut self, input: Input) -> IResult<Input, Self::Output, Self::Error> {
    self.process::<OutputM<Emit, Emit, Streaming>>(input)
  }

  /// A parser takes in input type, and returns a `Result` containing
  /// either the remaining input and the output value, or an error
  #[inline]
  fn parse_complete(&mut self, input: Input) -> IResult<Input, Self::Output, Self::Error> {
    self.process::<OutputM<Emit, Emit, Complete>>(input)
  }

  /// A parser takes in input type, and returns a `Result` containing
  /// either the remaining input and the output value, or an error
  fn process<OM: OutputMode>(
    &mut self,
    input: Input,
  ) -> PResult<OM, Input, Self::Output, Self::Error>;

  /// Maps a function over the result of a parser
  fn map<G, O2>(self, g: G) -> Map<Self, G>
  where
    G: FnMut(Self::Output) -> O2,
    Self: core::marker::Sized,
  {
    Map { f: self, g }
  }

  /// Applies a function returning a `Result` over the result of a parser.
  fn map_res<G, O2, E2>(self, g: G) -> MapRes<Self, G>
  where
    G: FnMut(Self::Output) -> Result<O2, E2>,
    Self::Error: FromExternalError<Input, E2>,
    Self: core::marker::Sized,
  {
    MapRes { f: self, g }
  }

  /// Applies a function returning an `Option` over the result of a parser.
  fn map_opt<G, O2>(self, g: G) -> MapOpt<Self, G>
  where
    G: FnMut(Self::Output) -> Option<O2>,
    Self: core::marker::Sized,
  {
    MapOpt { f: self, g }
  }

  /// Creates a second parser from the output of the first one, then apply over the rest of the input
  fn flat_map<G, H>(self, g: G) -> FlatMap<Self, G>
  where
    G: FnMut(Self::Output) -> H,
    H: Parser<Input, Error = Self::Error>,
    Self: core::marker::Sized,
  {
    FlatMap { f: self, g }
  }

  /// Applies a second parser over the output of the first one
  fn and_then<G>(self, g: G) -> AndThen<Self, G>
  where
    G: Parser<Self::Output, Error = Self::Error>,
    Self: core::marker::Sized,
  {
    AndThen { f: self, g }
  }

  /// Applies a second parser after the first one, return their results as a tuple
  fn and<G, O2>(self, g: G) -> And<Self, G>
  where
    G: Parser<Input, Output = O2, Error = Self::Error>,
    Self: core::marker::Sized,
  {
    And { f: self, g }
  }

  /// Applies a second parser over the input if the first one failed
  fn or<G>(self, g: G) -> Or<Self, G>
  where
    G: Parser<Input, Output = Self::Output, Error = Self::Error>,
    Self: core::marker::Sized,
  {
    Or { f: self, g }
  }

  /// automatically converts the parser's output and error values to another type, as long as they
  /// implement the `From` trait
  fn into<O2: From<Self::Output>, E2: From<Self::Error>>(self) -> Into<Self, O2, E2>
  where
    Self: core::marker::Sized,
  {
    Into {
      f: self,
      phantom_out2: core::marker::PhantomData,
      phantom_err2: core::marker::PhantomData,
    }
  }
}

impl<I, O, E: ParseError<I>, F> Parser<I> for F
where
  F: FnMut(I) -> IResult<I, O, E>,
{
  type Output = O;
  type Error = E;

  fn process<OM: OutputMode>(&mut self, i: I) -> PResult<OM, I, Self::Output, Self::Error> {
    let (i, o) = self(i).map_err(|e| match e {
      Err::Incomplete(i) => Err::Incomplete(i),
      Err::Error(e) => Err::Error(OM::Error::bind(|| e)),
      Err::Failure(e) => Err::Failure(e),
    })?;
    Ok((i, OM::Output::bind(|| o)))
  }
}

macro_rules! impl_parser_for_tuple {
  ($($parser:ident $output:ident),+) => (
    #[allow(non_snake_case)]
    impl<I, $($output),+, E: ParseError<I>, $($parser),+> Parser<I> for ($($parser),+,)
    where
      $($parser: Parser<I, Output = $output, Error = E>),+
    {
      type Output = ($($output),+,);
      type Error = E;

      #[inline(always)]
      fn process<OM: OutputMode>(&mut self, i: I) -> PResult<OM, I, Self::Output, Self::Error> {
        let ($(ref mut $parser),+,) = *self;

        // FIXME: is there a way to avoid producing the output values?
        $(let(i, $output) = $parser.process::<OutputM<Emit, OM::Error, OM::Incomplete>>(i)?;)+

        // ???
        Ok((i, OM::Output::bind(|| ($($output),+,))))
      }
    }
  )
}

macro_rules! impl_parser_for_tuples {
    ($parser1:ident $output1:ident, $($parser:ident $output:ident),+) => {
        impl_parser_for_tuples!(__impl $parser1 $output1; $($parser $output),+);
    };
    (__impl $($parser:ident $output:ident),+; $parser1:ident $output1:ident $(,$parser2:ident $output2:ident)*) => {
        impl_parser_for_tuple!($($parser $output),+);
        impl_parser_for_tuples!(__impl $($parser $output),+, $parser1 $output1; $($parser2 $output2),*);
    };
    (__impl $($parser:ident $output:ident),+;) => {
        impl_parser_for_tuple!($($parser $output),+);
    }
}

impl_parser_for_tuples!(P1 O1, P2 O2, P3 O3, P4 O4, P5 O5, P6 O6, P7 O7, P8 O8, P9 O9, P10 O10, P11 O11, P12 O12, P13 O13, P14 O14, P15 O15, P16 O16, P17 O17, P18 O18, P19 O19, P20 O20, P21 O21);

/*
#[cfg(feature = "alloc")]
use alloc::boxed::Box;

#[cfg(feature = "alloc")]
impl<I, O, E: ParseError<I>> Parser<I> for Box<dyn Parser<I, Output = O, Error = E>> {
  type Output = O;
  type Error = E;

  fn process<OM: OutputMode>(&mut self, input: I) -> PResult<OM, I, Self::Output, Self::Error> {
    (**self).process(input)
  }
}
*/
/// Implementation of `Parser::map`
pub struct Map<F, G> {
  f: F,
  g: G,
}

impl<I, O2, E: ParseError<I>, F: Parser<I, Error = E>, G: FnMut(<F as Parser<I>>::Output) -> O2>
  Parser<I> for Map<F, G>
{
  type Output = O2;
  type Error = E;

  #[inline(always)]
  fn process<OM: OutputMode>(&mut self, i: I) -> PResult<OM, I, Self::Output, Self::Error> {
    match self.f.process::<OM>(i) {
      Err(e) => Err(e),
      Ok((i, o)) => Ok((i, OM::Output::map(o, |o| (self.g)(o)))),
    }
  }
}

/// Implementation of `Parser::map_res`
pub struct MapRes<F, G> {
  f: F,
  g: G,
}

impl<I, O2, E2, F, G> Parser<I> for MapRes<F, G>
where
  I: Clone,
  <F as Parser<I>>::Error: FromExternalError<I, E2>,
  F: Parser<I>,
  G: FnMut(<F as Parser<I>>::Output) -> Result<O2, E2>,
{
  type Output = O2;
  type Error = <F as Parser<I>>::Error;

  fn process<OM: OutputMode>(&mut self, i: I) -> PResult<OM, I, Self::Output, Self::Error> {
    let (input, o1) = self
      .f
      .process::<OutputM<Emit, OM::Error, OM::Incomplete>>(i.clone())?;

    match (self.g)(o1) {
      Ok(o2) => Ok((input, OM::Output::bind(|| o2))),
      Err(e) => Err(Err::Error(OM::Error::bind(|| {
        <F as Parser<I>>::Error::from_external_error(i, ErrorKind::MapRes, e)
      }))),
    }
  }
}

/// Implementation of `Parser::map_opt`
pub struct MapOpt<F, G> {
  f: F,
  g: G,
}

impl<I, O2, F, G> Parser<I> for MapOpt<F, G>
where
  I: Clone,
  F: Parser<I>,
  G: FnMut(<F as Parser<I>>::Output) -> Option<O2>,
{
  type Output = O2;
  type Error = <F as Parser<I>>::Error;

  fn process<OM: OutputMode>(&mut self, i: I) -> PResult<OM, I, Self::Output, Self::Error> {
    let (input, o1) = self
      .f
      .process::<OutputM<Emit, OM::Error, OM::Incomplete>>(i.clone())?;

    match (self.g)(o1) {
      Some(o2) => Ok((input, OM::Output::bind(|| o2))),
      None => Err(Err::Error(OM::Error::bind(|| {
        <F as Parser<I>>::Error::from_error_kind(i, ErrorKind::MapOpt)
      }))),
    }
  }
}

/// Implementation of `Parser::flat_map`
pub struct FlatMap<F, G> {
  f: F,
  g: G,
}

impl<
    I,
    E: ParseError<I>,
    F: Parser<I, Error = E>,
    G: FnMut(<F as Parser<I>>::Output) -> H,
    H: Parser<I, Error = E>,
  > Parser<I> for FlatMap<F, G>
{
  type Output = <H as Parser<I>>::Output;
  type Error = E;

  fn process<OM: OutputMode>(&mut self, i: I) -> PResult<OM, I, Self::Output, Self::Error> {
    let (input, o1) = self
      .f
      .process::<OutputM<Emit, OM::Error, OM::Incomplete>>(i)?;

    (self.g)(o1).process::<OM>(input)
  }
}

/// Implementation of `Parser::and_then`
pub struct AndThen<F, G> {
  f: F,
  g: G,
}

impl<I, F: Parser<I>, G: Parser<<F as Parser<I>>::Output, Error = <F as Parser<I>>::Error>>
  Parser<I> for AndThen<F, G>
{
  type Output = <G as Parser<<F as Parser<I>>::Output>>::Output;
  type Error = <F as Parser<I>>::Error;

  fn process<OM: OutputMode>(&mut self, i: I) -> PResult<OM, I, Self::Output, Self::Error> {
    let (input, o1) = self
      .f
      .process::<OutputM<Emit, OM::Error, OM::Incomplete>>(i)?;

    let (_, o2) = self.g.process::<OM>(o1)?;
    Ok((input, o2))
  }
}

/// Implementation of `Parser::and`
pub struct And<F, G> {
  f: F,
  g: G,
}

impl<I, E: ParseError<I>, F: Parser<I, Error = E>, G: Parser<I, Error = E>> Parser<I>
  for And<F, G>
{
  type Output = (<F as Parser<I>>::Output, <G as Parser<I>>::Output);
  type Error = E;

  #[inline(always)]
  fn process<OM: OutputMode>(&mut self, i: I) -> PResult<OM, I, Self::Output, Self::Error> {
    let (i, o1) = self.f.process::<OM>(i)?;
    let (i, o2) = self.g.process::<OM>(i)?;

    Ok((i, OM::Output::combine(o1, o2, |o1, o2| (o1, o2))))
  }
}

/// Implementation of `Parser::or`
pub struct Or<F, G> {
  f: F,
  g: G,
}

impl<
    I: Clone,
    O,
    E: ParseError<I>,
    F: Parser<I, Output = O, Error = E>,
    G: Parser<I, Output = O, Error = E>,
  > Parser<I> for Or<F, G>
{
  type Output = <F as Parser<I>>::Output;
  type Error = <F as Parser<I>>::Error;

  fn process<OM: OutputMode>(&mut self, i: I) -> PResult<OM, I, Self::Output, Self::Error> {
    match self.f.process::<OM>(i.clone()) {
      Err(Err::Error(e1)) => match self.g.process::<OM>(i) {
        Err(Err::Error(e2)) => Err(Err::Error(OM::Error::combine(e1, e2, |e1, e2| e1.or(e2)))),
        res => res,
      },
      res => res,
    }
  }
}

/// Implementation of `Parser::into`
pub struct Into<F, O2, E2> {
  f: F,
  phantom_out2: core::marker::PhantomData<O2>,
  phantom_err2: core::marker::PhantomData<E2>,
}

impl<
    I,
    O2: From<<F as Parser<I>>::Output>,
    E2: crate::error::ParseError<I> + From<<F as Parser<I>>::Error>,
    F: Parser<I>,
  > Parser<I> for Into<F, O2, E2>
{
  type Output = O2;
  type Error = E2;

  fn process<OM: OutputMode>(&mut self, i: I) -> PResult<OM, I, Self::Output, Self::Error> {
    match self.f.process::<OM>(i) {
      Ok((i, o)) => Ok((i, OM::Output::map(o, |o| o.into()))),
      Err(Err::Error(e)) => Err(Err::Error(OM::Error::map(e, |e| e.into()))),
      Err(Err::Failure(e)) => Err(Err::Failure(e.into())),
      Err(Err::Incomplete(e)) => Err(Err::Incomplete(e)),
    }
  }
}

/// Alternate between two Parser implementations with the same result type.
pub(crate) enum Either<F, G> {
  Left(F),
  Right(G),
}

impl<
    I,
    F: Parser<I>,
    G: Parser<I, Output = <F as Parser<I>>::Output, Error = <F as Parser<I>>::Error>,
  > Parser<I> for Either<F, G>
{
  type Output = <F as Parser<I>>::Output;
  type Error = <F as Parser<I>>::Error;

  #[inline]
  fn process<OM: OutputMode>(&mut self, i: I) -> PResult<OM, I, Self::Output, Self::Error> {
    match self {
      Either::Left(f) => f.process::<OM>(i),
      Either::Right(g) => g.process::<OM>(i),
    }
  }
}

#[cfg(test)]
mod tests {
  use super::*;
  use crate::error::ErrorKind;

  use crate::bytes::streaming::{tag, take};
  use crate::number::streaming::be_u16;
  use crate::sequence::terminated;

  #[doc(hidden)]
  #[macro_export]
  macro_rules! assert_size (
    ($t:ty, $sz:expr) => (
      assert_eq!($crate::lib::std::mem::size_of::<$t>(), $sz);
    );
  );

  #[test]
  #[cfg(target_pointer_width = "64")]
  fn size_test() {
    assert_size!(IResult<&[u8], &[u8], (&[u8], u32)>, 40);
    //FIXME: since rust 1.65, this is now 32 bytes, likely thanks to https://github.com/rust-lang/rust/pull/94075
    // deactivating that test for now because it'll have different values depending on the rust version
    // assert_size!(IResult<&str, &str, u32>, 40);
    assert_size!(Needed, 8);
    assert_size!(Err<u32>, 16);
    assert_size!(ErrorKind, 1);
  }

  #[test]
  fn err_map_test() {
    let e = Err::Error(1);
    assert_eq!(e.map(|v| v + 1), Err::Error(2));
  }

  #[test]
  fn native_tuple_test() {
    fn tuple_3(i: &[u8]) -> IResult<&[u8], (u16, &[u8])> {
      terminated((be_u16, take(3u8)), tag("fg")).parse(i)
    }

    assert_eq!(
      tuple_3(&b"abcdefgh"[..]),
      Ok((&b"h"[..], (0x6162u16, &b"cde"[..])))
    );
    assert_eq!(tuple_3(&b"abcd"[..]), Err(Err::Incomplete(Needed::new(1))));
    assert_eq!(tuple_3(&b"abcde"[..]), Err(Err::Incomplete(Needed::new(2))));
    assert_eq!(
      tuple_3(&b"abcdejk"[..]),
      Err(Err::Error(error_position!(&b"jk"[..], ErrorKind::Tag)))
    );
  }
}