1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
//! Working with abstract syntax trees.
//!
//! In rowan, syntax trees are transient objects. That means that we create
//! trees when we need them, and tear them down to save memory. In this
//! architecture, hanging on to a particular syntax node for a long time is
//! ill-advisable, as that keeps the whole tree resident.
//!
//! Instead, we provide a [`SyntaxNodePtr`] type, which stores information about
//! the _location_ of a particular syntax node in a tree. It's a small type
//! which can be cheaply stored, and which can be resolved to a real
//! [`SyntaxNode`] when necessary.
//!
//! We also provide an [`AstNode`] trait for typed AST wrapper APIs over rowan
//! nodes.
use std::{
fmt,
hash::{Hash, Hasher},
iter::successors,
marker::PhantomData,
};
use crate::{Language, SyntaxNode, SyntaxNodeChildren, TextRange};
/// The main trait to go from untyped [`SyntaxNode`] to a typed AST. The
/// conversion itself has zero runtime cost: AST and syntax nodes have exactly
/// the same representation: a pointer to the tree root and a pointer to the
/// node itself.
pub trait AstNode {
type Language: Language;
fn can_cast(kind: <Self::Language as Language>::Kind) -> bool
where
Self: Sized;
fn cast(node: SyntaxNode<Self::Language>) -> Option<Self>
where
Self: Sized;
fn syntax(&self) -> &SyntaxNode<Self::Language>;
fn clone_for_update(&self) -> Self
where
Self: Sized,
{
Self::cast(self.syntax().clone_for_update()).unwrap()
}
fn clone_subtree(&self) -> Self
where
Self: Sized,
{
Self::cast(self.syntax().clone_subtree()).unwrap()
}
}
/// A "pointer" to a [`SyntaxNode`], via location in the source code.
///
/// ## Note
/// Since the location is source code dependent, this must not be used
/// with mutable syntax trees. Any changes made in such trees causes
/// the pointed node's source location to change, invalidating the pointer.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub struct SyntaxNodePtr<L: Language> {
kind: L::Kind,
range: TextRange,
}
impl<L: Language> SyntaxNodePtr<L> {
/// Returns a [`SyntaxNodePtr`] for the node.
///
/// Panics if the provided node is mutable
pub fn new(node: &SyntaxNode<L>) -> Self {
assert!(!node.is_mutable(), "tree is mutable");
Self { kind: node.kind(), range: node.text_range() }
}
/// Like [`Self::try_to_node`] but panics instead of returning `None` on
/// failure.
pub fn to_node(&self, root: &SyntaxNode<L>) -> SyntaxNode<L> {
self.try_to_node(root).unwrap_or_else(|| panic!("can't resolve {self:?} with {root:?}"))
}
/// "Dereferences" the pointer to get the [`SyntaxNode`] it points to.
///
/// Returns `None` if the node is not found, so make sure that the `root`
/// syntax tree is equivalent to (i.e. is build from the same text from) the
/// tree which was originally used to get this [`SyntaxNodePtr`].
///
/// Also returns `None` if `root` is not actually a root (i.e. it has a
/// parent).
///
/// NOTE: If this function is called on a mutable tree, it will panic
///
/// The complexity is linear in the depth of the tree and logarithmic in
/// tree width. As most trees are shallow, thinking about this as
/// `O(log(N))` in the size of the tree is not too wrong!
pub fn try_to_node(&self, root: &SyntaxNode<L>) -> Option<SyntaxNode<L>> {
assert!(!root.is_mutable(), "tree is mutable");
if root.parent().is_some() {
return None;
}
successors(Some(root.clone()), |node| node.child_or_token_at_range(self.range)?.into_node())
.find(|it| it.text_range() == self.range && it.kind() == self.kind)
}
/// Casts this to an [`AstPtr`] to the given node type if possible.
pub fn cast<N: AstNode<Language = L>>(self) -> Option<AstPtr<N>> {
if !N::can_cast(self.kind) {
return None;
}
Some(AstPtr { raw: self })
}
/// Returns the kind of the syntax node this points to.
pub fn kind(&self) -> L::Kind {
self.kind
}
/// Returns the range of the syntax node this points to.
pub fn text_range(&self) -> TextRange {
self.range
}
}
/// Like [`SyntaxNodePtr`], but remembers the type of node.
///
/// ## Note
/// As with [`SyntaxNodePtr`], this must not be used on mutable
/// syntax trees, since any mutation can cause the pointed node's
/// source location to change, invalidating the pointer
pub struct AstPtr<N: AstNode> {
raw: SyntaxNodePtr<N::Language>,
}
impl<N: AstNode> AstPtr<N> {
/// Returns an [`AstPtr`] for the node.
///
/// Panics if the provided node is mutable
pub fn new(node: &N) -> Self {
// The above mentioned panic is handled by SyntaxNodePtr
Self { raw: SyntaxNodePtr::new(node.syntax()) }
}
/// Like `Self::try_to_node` but panics on failure.
pub fn to_node(&self, root: &SyntaxNode<N::Language>) -> N {
self.try_to_node(root).unwrap_or_else(|| panic!("can't resolve {self:?} with {root:?}"))
}
/// Given the root node containing the node `n` that `self` is a pointer to,
/// returns `n` if possible. Panics if `root` is mutable. See [`SyntaxNodePtr::try_to_node`].
pub fn try_to_node(&self, root: &SyntaxNode<N::Language>) -> Option<N> {
// The above mentioned panic is handled by SyntaxNodePtr
N::cast(self.raw.try_to_node(root)?)
}
/// Returns the underlying [`SyntaxNodePtr`].
pub fn syntax_node_ptr(&self) -> SyntaxNodePtr<N::Language> {
self.raw.clone()
}
/// Casts this to an [`AstPtr`] to the given node type if possible.
pub fn cast<U: AstNode<Language = N::Language>>(self) -> Option<AstPtr<U>> {
if !U::can_cast(self.raw.kind) {
return None;
}
Some(AstPtr { raw: self.raw })
}
}
impl<N: AstNode> fmt::Debug for AstPtr<N> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("AstPtr").field("raw", &self.raw).finish()
}
}
impl<N: AstNode> Clone for AstPtr<N> {
fn clone(&self) -> Self {
Self { raw: self.raw.clone() }
}
}
impl<N: AstNode> PartialEq for AstPtr<N> {
fn eq(&self, other: &AstPtr<N>) -> bool {
self.raw == other.raw
}
}
impl<N: AstNode> Eq for AstPtr<N> {}
impl<N: AstNode> Hash for AstPtr<N> {
fn hash<H: Hasher>(&self, state: &mut H) {
self.raw.hash(state)
}
}
impl<N: AstNode> From<AstPtr<N>> for SyntaxNodePtr<N::Language> {
fn from(ptr: AstPtr<N>) -> SyntaxNodePtr<N::Language> {
ptr.raw
}
}
#[derive(Debug, Clone)]
pub struct AstChildren<N: AstNode> {
inner: SyntaxNodeChildren<N::Language>,
ph: PhantomData<N>,
}
impl<N: AstNode> AstChildren<N> {
fn new(parent: &SyntaxNode<N::Language>) -> Self {
AstChildren { inner: parent.children(), ph: PhantomData }
}
}
impl<N: AstNode> Iterator for AstChildren<N> {
type Item = N;
fn next(&mut self) -> Option<N> {
self.inner.find_map(N::cast)
}
}
pub mod support {
use super::{AstChildren, AstNode};
use crate::{Language, SyntaxNode, SyntaxToken};
pub fn child<N: AstNode>(parent: &SyntaxNode<N::Language>) -> Option<N> {
parent.children().find_map(N::cast)
}
pub fn children<N: AstNode>(parent: &SyntaxNode<N::Language>) -> AstChildren<N> {
AstChildren::new(parent)
}
pub fn token<L: Language>(parent: &SyntaxNode<L>, kind: L::Kind) -> Option<SyntaxToken<L>> {
parent.children_with_tokens().filter_map(|it| it.into_token()).find(|it| it.kind() == kind)
}
}
#[cfg(test)]
mod tests {
use crate::{GreenNodeBuilder, Language, SyntaxKind, SyntaxNode};
use super::SyntaxNodePtr;
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
struct TestLanguage;
impl Language for TestLanguage {
type Kind = SyntaxKind;
fn kind_from_raw(raw: SyntaxKind) -> Self::Kind {
raw
}
fn kind_to_raw(kind: Self::Kind) -> SyntaxKind {
kind
}
}
fn build_immut_tree() -> SyntaxNode<TestLanguage> {
// Creates a single-node tree
let mut builder = GreenNodeBuilder::new();
builder.start_node(SyntaxKind(0));
builder.finish_node();
SyntaxNode::<TestLanguage>::new_root(builder.finish())
}
#[test]
#[should_panic = "tree is mutable"]
fn ensure_mut_panic_on_create() {
// Make a mutable version
let tree = build_immut_tree().clone_for_update();
SyntaxNodePtr::new(&tree);
}
#[test]
#[should_panic = "tree is mutable"]
fn ensure_mut_panic_on_deref() {
let tree = build_immut_tree();
let tree_mut = tree.clone_for_update();
// Create on immutable, convert on mutable
let syn_ptr = SyntaxNodePtr::new(&tree);
syn_ptr.to_node(&tree_mut);
}
}