opentelemetry_sdk/metrics/internal/
last_value.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
use crate::metrics::{
    data::{self, Aggregation, Gauge, GaugeDataPoint},
    Temporality,
};
use opentelemetry::KeyValue;

use super::{
    aggregate::{AggregateTimeInitiator, AttributeSetFilter},
    Aggregator, AtomicTracker, AtomicallyUpdate, ComputeAggregation, Measure, Number, ValueMap,
};

/// this is reused by PrecomputedSum
pub(crate) struct Assign<T>
where
    T: AtomicallyUpdate<T>,
{
    pub(crate) value: T::AtomicTracker,
}

impl<T> Aggregator for Assign<T>
where
    T: Number,
{
    type InitConfig = ();
    type PreComputedValue = T;

    fn create(_init: &()) -> Self {
        Self {
            value: T::new_atomic_tracker(T::default()),
        }
    }

    fn update(&self, value: T) {
        self.value.store(value)
    }

    fn clone_and_reset(&self, _: &()) -> Self {
        Self {
            value: T::new_atomic_tracker(self.value.get_and_reset_value()),
        }
    }
}

/// Summarizes a set of measurements as the last one made.
pub(crate) struct LastValue<T: Number> {
    value_map: ValueMap<Assign<T>>,
    init_time: AggregateTimeInitiator,
    temporality: Temporality,
    filter: AttributeSetFilter,
}

impl<T: Number> LastValue<T> {
    pub(crate) fn new(temporality: Temporality, filter: AttributeSetFilter) -> Self {
        LastValue {
            value_map: ValueMap::new(()),
            init_time: AggregateTimeInitiator::default(),
            temporality,
            filter,
        }
    }

    pub(crate) fn delta(
        &self,
        dest: Option<&mut dyn Aggregation>,
    ) -> (usize, Option<Box<dyn Aggregation>>) {
        let time = self.init_time.delta();

        let s_data = dest.and_then(|d| d.as_mut().downcast_mut::<Gauge<T>>());
        let mut new_agg = if s_data.is_none() {
            Some(data::Gauge {
                data_points: vec![],
                start_time: Some(time.start),
                time: time.current,
            })
        } else {
            None
        };
        let s_data = s_data.unwrap_or_else(|| new_agg.as_mut().expect("present if s_data is none"));
        s_data.start_time = Some(time.start);
        s_data.time = time.current;

        self.value_map
            .collect_and_reset(&mut s_data.data_points, |attributes, aggr| GaugeDataPoint {
                attributes,
                value: aggr.value.get_value(),
                exemplars: vec![],
            });

        (
            s_data.data_points.len(),
            new_agg.map(|a| Box::new(a) as Box<_>),
        )
    }

    pub(crate) fn cumulative(
        &self,
        dest: Option<&mut dyn Aggregation>,
    ) -> (usize, Option<Box<dyn Aggregation>>) {
        let time = self.init_time.cumulative();
        let s_data = dest.and_then(|d| d.as_mut().downcast_mut::<Gauge<T>>());
        let mut new_agg = if s_data.is_none() {
            Some(data::Gauge {
                data_points: vec![],
                start_time: Some(time.start),
                time: time.current,
            })
        } else {
            None
        };
        let s_data = s_data.unwrap_or_else(|| new_agg.as_mut().expect("present if s_data is none"));

        s_data.start_time = Some(time.start);
        s_data.time = time.current;

        self.value_map
            .collect_readonly(&mut s_data.data_points, |attributes, aggr| GaugeDataPoint {
                attributes,
                value: aggr.value.get_value(),
                exemplars: vec![],
            });

        (
            s_data.data_points.len(),
            new_agg.map(|a| Box::new(a) as Box<_>),
        )
    }
}

impl<T> Measure<T> for LastValue<T>
where
    T: Number,
{
    fn call(&self, measurement: T, attrs: &[KeyValue]) {
        self.filter.apply(attrs, |filtered| {
            self.value_map.measure(measurement, filtered);
        })
    }
}

impl<T> ComputeAggregation for LastValue<T>
where
    T: Number,
{
    fn call(&self, dest: Option<&mut dyn Aggregation>) -> (usize, Option<Box<dyn Aggregation>>) {
        match self.temporality {
            Temporality::Delta => self.delta(dest),
            _ => self.cumulative(dest),
        }
    }
}