1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
//! Configuration options for writing floats.
use core::{mem, num};
use lexical_util::ascii::{is_valid_ascii, is_valid_letter_slice};
use lexical_util::constants::FormattedSize;
use lexical_util::error::Error;
use lexical_util::format::NumberFormat;
use lexical_util::options::{self, WriteOptions};
use lexical_util::result::Result;
use static_assertions::const_assert;
/// Type with the exact same size as a `usize`.
pub type OptionUsize = Option<num::NonZeroUsize>;
/// Type with the exact same size as a `i32`.
pub type OptionI32 = Option<num::NonZeroI32>;
// Ensure the sizes are identical.
const_assert!(mem::size_of::<OptionUsize>() == mem::size_of::<usize>());
const_assert!(mem::size_of::<OptionI32>() == mem::size_of::<i32>());
/// Enumeration for how to round floats with precision control.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum RoundMode {
/// Round to the nearest float string with the given number of significant digits.
Round,
/// Truncate the float string with the given number of significant digits.
Truncate,
}
/// Maximum length for a special string.
const MAX_SPECIAL_STRING_LENGTH: usize = 50;
const_assert!(MAX_SPECIAL_STRING_LENGTH < f32::FORMATTED_SIZE_DECIMAL);
/// Builder for `Options`.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct OptionsBuilder {
/// Maximum number of significant digits to write.
/// If not set, it defaults to the algorithm's default.
max_significant_digits: OptionUsize,
/// Minimum number of significant digits to write.
/// If not set, it defaults to the algorithm's default.
/// Note that this isn't fully respected: if you wish to format
/// `0.1` with 25 significant digits, the correct result **should**
/// be `0.100000000000000005551115`. However, we would output
/// `0.100000000000000000000000`, which is still the nearest float.
min_significant_digits: OptionUsize,
/// Maximum exponent prior to using scientific notation.
/// This is ignored if the exponent base is not the same as the mantissa radix.
/// If not provided, use the algorithm's default.
positive_exponent_break: OptionI32,
/// Minimum exponent prior to using scientific notation.
/// This is ignored if the exponent base is not the same as the mantissa radix.
/// If not provided, use the algorithm's default.
negative_exponent_break: OptionI32,
/// Rounding mode for writing digits with precision control.
round_mode: RoundMode,
/// Trim the trailing ".0" from integral float strings.
trim_floats: bool,
/// Character to designate the exponent component of a float.
exponent: u8,
/// Character to separate the integer from the fraction components.
decimal_point: u8,
/// String representation of Not A Number, aka `NaN`.
nan_string: Option<&'static [u8]>,
/// String representation of `Infinity`.
inf_string: Option<&'static [u8]>,
}
impl OptionsBuilder {
// CONSTRUCTORS
#[inline(always)]
pub const fn new() -> Self {
Self {
max_significant_digits: None,
min_significant_digits: None,
positive_exponent_break: None,
negative_exponent_break: None,
round_mode: RoundMode::Round,
trim_floats: false,
exponent: b'e',
decimal_point: b'.',
nan_string: Some(b"NaN"),
inf_string: Some(b"inf"),
}
}
// GETTERS
/// Get the maximum number of significant digits to write.
#[inline(always)]
pub const fn get_max_significant_digits(&self) -> OptionUsize {
self.max_significant_digits
}
/// Get the minimum number of significant digits to write.
#[inline(always)]
pub const fn get_min_significant_digits(&self) -> OptionUsize {
self.min_significant_digits
}
/// Get the maximum exponent prior to using scientific notation.
#[inline(always)]
pub const fn get_positive_exponent_break(&self) -> OptionI32 {
self.positive_exponent_break
}
/// Get the minimum exponent prior to using scientific notation.
#[inline(always)]
pub const fn get_negative_exponent_break(&self) -> OptionI32 {
self.negative_exponent_break
}
/// Get the rounding mode for writing digits with precision control.
#[inline(always)]
pub const fn get_round_mode(&self) -> RoundMode {
self.round_mode
}
/// Get if we should trim a trailing `".0"` from floats.
#[inline(always)]
pub const fn get_trim_floats(&self) -> bool {
self.trim_floats
}
/// Get the character to designate the exponent component of a float.
#[inline(always)]
pub const fn get_exponent(&self) -> u8 {
self.exponent
}
/// Get the character to separate the integer from the fraction components.
#[inline(always)]
pub const fn get_decimal_point(&self) -> u8 {
self.decimal_point
}
/// Get the string representation for `NaN`.
#[inline(always)]
pub const fn get_nan_string(&self) -> Option<&'static [u8]> {
self.nan_string
}
/// Get the short string representation for `Infinity`.
#[inline(always)]
pub const fn get_inf_string(&self) -> Option<&'static [u8]> {
self.inf_string
}
// SETTERS
/// Set the maximum number of significant digits to write.
#[inline(always)]
pub const fn max_significant_digits(mut self, max_significant_digits: OptionUsize) -> Self {
self.max_significant_digits = max_significant_digits;
self
}
/// Set the minimum number of significant digits to write.
#[inline(always)]
pub const fn min_significant_digits(mut self, min_significant_digits: OptionUsize) -> Self {
self.min_significant_digits = min_significant_digits;
self
}
/// Set the maximum exponent prior to using scientific notation.
#[inline(always)]
pub const fn positive_exponent_break(mut self, positive_exponent_break: OptionI32) -> Self {
self.positive_exponent_break = positive_exponent_break;
self
}
/// Set the minimum exponent prior to using scientific notation.
#[inline(always)]
pub const fn negative_exponent_break(mut self, negative_exponent_break: OptionI32) -> Self {
self.negative_exponent_break = negative_exponent_break;
self
}
/// Set the rounding mode for writing digits with precision control.
#[inline(always)]
pub const fn round_mode(mut self, round_mode: RoundMode) -> Self {
self.round_mode = round_mode;
self
}
/// Set if we should trim a trailing `".0"` from floats.
#[inline(always)]
pub const fn trim_floats(mut self, trim_floats: bool) -> Self {
self.trim_floats = trim_floats;
self
}
/// Set the character to designate the exponent component of a float.
#[inline(always)]
pub const fn exponent(mut self, exponent: u8) -> Self {
self.exponent = exponent;
self
}
/// Set the character to separate the integer from the fraction components.
#[inline(always)]
pub const fn decimal_point(mut self, decimal_point: u8) -> Self {
self.decimal_point = decimal_point;
self
}
/// Set the string representation for `NaN`.
#[inline(always)]
pub const fn nan_string(mut self, nan_string: Option<&'static [u8]>) -> Self {
self.nan_string = nan_string;
self
}
/// Set the string representation for `Infinity`.
#[inline(always)]
pub const fn inf_string(mut self, inf_string: Option<&'static [u8]>) -> Self {
self.inf_string = inf_string;
self
}
// BUILDERS
/// Determine if `nan_str` is valid.
#[inline(always)]
#[allow(clippy::if_same_then_else, clippy::needless_bool)]
pub const fn nan_str_is_valid(&self) -> bool {
if self.nan_string.is_none() {
return true;
}
let nan = unwrap_str(self.nan_string);
let length = nan.len();
if length == 0 || length > MAX_SPECIAL_STRING_LENGTH {
false
} else if !matches!(nan[0], b'N' | b'n') {
false
} else if !is_valid_letter_slice(nan) {
false
} else {
true
}
}
/// Determine if `inf_str` is valid.
#[inline(always)]
#[allow(clippy::if_same_then_else, clippy::needless_bool)]
pub const fn inf_str_is_valid(&self) -> bool {
if self.inf_string.is_none() {
return true;
}
let inf = unwrap_str(self.inf_string);
let length = inf.len();
if length == 0 || length > MAX_SPECIAL_STRING_LENGTH {
false
} else if !matches!(inf[0], b'I' | b'i') {
false
} else if !is_valid_letter_slice(inf) {
false
} else {
true
}
}
/// Check if the builder state is valid.
#[inline(always)]
#[allow(clippy::if_same_then_else, clippy::needless_bool)]
pub const fn is_valid(&self) -> bool {
if !is_valid_ascii(self.exponent) {
false
} else if !is_valid_ascii(self.decimal_point) {
false
} else if !self.nan_str_is_valid() {
false
} else if !self.inf_str_is_valid() {
false
} else {
true
}
}
/// Build the Options struct with bounds validation.
///
/// # Safety
///
/// Safe as long as `is_valid` is true. If `nan_string` or `inf_string`
/// are too long, writing special floats may lead to buffer overflows,
/// and therefore severe security vulnerabilities.
#[inline(always)]
pub const unsafe fn build_unchecked(&self) -> Options {
Options {
max_significant_digits: self.max_significant_digits,
min_significant_digits: self.min_significant_digits,
positive_exponent_break: self.positive_exponent_break,
negative_exponent_break: self.negative_exponent_break,
round_mode: self.round_mode,
trim_floats: self.trim_floats,
exponent: self.exponent,
decimal_point: self.decimal_point,
nan_string: self.nan_string,
inf_string: self.inf_string,
}
}
/// Build the Options struct.
#[inline(always)]
#[allow(clippy::if_same_then_else)]
pub const fn build(&self) -> Result<Options> {
if self.nan_string.is_some() {
let nan = unwrap_str(self.nan_string);
if nan.is_empty() || !matches!(nan[0], b'N' | b'n') {
return Err(Error::InvalidNanString);
} else if !is_valid_letter_slice(nan) {
return Err(Error::InvalidNanString);
} else if nan.len() > MAX_SPECIAL_STRING_LENGTH {
return Err(Error::NanStringTooLong);
}
}
if self.inf_string.is_some() {
let inf = unwrap_str(self.inf_string);
if inf.is_empty() || !matches!(inf[0], b'I' | b'i') {
return Err(Error::InvalidInfString);
} else if !is_valid_letter_slice(inf) {
return Err(Error::InvalidInfString);
} else if inf.len() > MAX_SPECIAL_STRING_LENGTH {
return Err(Error::InfStringTooLong);
}
}
let min_digits = unwrap_or_zero_usize(self.min_significant_digits);
let max_digits = unwrap_or_max_usize(self.max_significant_digits);
if max_digits < min_digits {
Err(Error::InvalidFloatPrecision)
} else if unwrap_or_zero_i32(self.negative_exponent_break) > 0 {
Err(Error::InvalidNegativeExponentBreak)
} else if unwrap_or_zero_i32(self.positive_exponent_break) < 0 {
Err(Error::InvalidPositiveExponentBreak)
} else if !is_valid_ascii(self.exponent) {
Err(Error::InvalidExponentSymbol)
} else if !is_valid_ascii(self.decimal_point) {
Err(Error::InvalidDecimalPoint)
} else {
// SAFETY: always safe, since it must be valid.
Ok(unsafe { self.build_unchecked() })
}
}
}
impl Default for OptionsBuilder {
#[inline(always)]
fn default() -> Self {
Self::new()
}
}
/// Options to customize writing floats.
///
/// # Examples
///
/// ```rust
/// # extern crate lexical_write_float;
/// use lexical_write_float::Options;
///
/// # pub fn main() {
/// let options = Options::builder()
/// .trim_floats(true)
/// .nan_string(Some(b"NaN"))
/// .inf_string(Some(b"Inf"))
/// .build()
/// .unwrap();
/// # }
/// ```
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct Options {
/// Maximum number of significant digits to write.
/// If not set, it defaults to the algorithm's default.
max_significant_digits: OptionUsize,
/// Minimum number of significant digits to write.
/// If not set, it defaults to the algorithm's default.
min_significant_digits: OptionUsize,
/// Maximum exponent prior to using scientific notation.
/// This is ignored if the exponent base is not the same as the mantissa radix.
/// If not provided, use the algorithm's default.
positive_exponent_break: OptionI32,
/// Minimum exponent prior to using scientific notation.
/// This is ignored if the exponent base is not the same as the mantissa radix.
/// If not provided, use the algorithm's default.
negative_exponent_break: OptionI32,
/// Rounding mode for writing digits with precision control.
round_mode: RoundMode,
/// Trim the trailing ".0" from integral float strings.
trim_floats: bool,
/// Character to designate the exponent component of a float.
exponent: u8,
/// Character to separate the integer from the fraction components.
decimal_point: u8,
/// String representation of Not A Number, aka `NaN`.
nan_string: Option<&'static [u8]>,
/// String representation of `Infinity`.
inf_string: Option<&'static [u8]>,
}
impl Options {
// CONSTRUCTORS
/// Create options with default values.
#[inline(always)]
pub const fn new() -> Self {
// SAFETY: always safe since it uses the default arguments.
unsafe { Self::builder().build_unchecked() }
}
/// Create the default options for a given radix.
#[inline(always)]
#[cfg(feature = "power-of-two")]
pub const fn from_radix(radix: u8) -> Self {
// Need to determine the correct exponent character ('e' or '^'),
// since the default character is `e` normally, but this is a valid
// digit for radix >= 15.
let mut builder = Self::builder();
if radix >= 15 {
builder = builder.exponent(b'^');
}
// SAFETY: always safe since it uses the default arguments.
unsafe { builder.build_unchecked() }
}
// GETTERS
/// Check if the options state is valid.
#[inline(always)]
pub const fn is_valid(&self) -> bool {
self.rebuild().is_valid()
}
/// Get the maximum number of significant digits to write.
#[inline(always)]
pub const fn max_significant_digits(&self) -> OptionUsize {
self.max_significant_digits
}
/// Get the minimum number of significant digits to write.
#[inline(always)]
pub const fn min_significant_digits(&self) -> OptionUsize {
self.min_significant_digits
}
/// Get the maximum exponent prior to using scientific notation.
#[inline(always)]
pub const fn positive_exponent_break(&self) -> OptionI32 {
self.positive_exponent_break
}
/// Get the minimum exponent prior to using scientific notation.
#[inline(always)]
pub const fn negative_exponent_break(&self) -> OptionI32 {
self.negative_exponent_break
}
/// Get the rounding mode for writing digits with precision control.
#[inline(always)]
pub const fn round_mode(&self) -> RoundMode {
self.round_mode
}
/// Get if we should trim a trailing `".0"` from floats.
#[inline(always)]
pub const fn trim_floats(&self) -> bool {
self.trim_floats
}
/// Get the character to designate the exponent component of a float.
#[inline(always)]
pub const fn exponent(&self) -> u8 {
self.exponent
}
/// Get the character to separate the integer from the fraction components.
#[inline(always)]
pub const fn decimal_point(&self) -> u8 {
self.decimal_point
}
/// Get the string representation for `NaN`.
#[inline(always)]
pub const fn nan_string(&self) -> Option<&'static [u8]> {
self.nan_string
}
/// Get the short string representation for `Infinity`.
#[inline(always)]
pub const fn inf_string(&self) -> Option<&'static [u8]> {
self.inf_string
}
// SETTERS
/// Set the maximum number of significant digits to write.
/// Unsafe, use the builder API for option validation.
///
/// # Safety
///
/// Always safe, just marked as unsafe for API compatibility.
#[inline(always)]
pub unsafe fn set_max_significant_digits(&mut self, max_significant_digits: OptionUsize) {
self.max_significant_digits = max_significant_digits
}
/// Set the minimum number of significant digits to write.
/// Unsafe, use the builder API for option validation.
///
/// # Safety
///
/// Always safe, just marked as unsafe for API compatibility.
#[inline(always)]
pub unsafe fn set_min_significant_digits(&mut self, min_significant_digits: OptionUsize) {
self.min_significant_digits = min_significant_digits
}
/// Set the maximum exponent prior to using scientific notation.
///
/// # Safety
///
/// Always safe, just marked as unsafe for API compatibility.
#[inline(always)]
pub unsafe fn set_positive_exponent_break(&mut self, positive_exponent_break: OptionI32) {
self.positive_exponent_break = positive_exponent_break;
}
/// Set the minimum exponent prior to using scientific notation.
///
/// # Safety
///
/// Always safe, just marked as unsafe for API compatibility.
#[inline(always)]
pub unsafe fn set_negative_exponent_break(&mut self, negative_exponent_break: OptionI32) {
self.negative_exponent_break = negative_exponent_break;
}
/// Set the rounding mode for writing digits with precision control.
///
/// # Safety
///
/// Always safe, just marked as unsafe for API compatibility.
#[inline(always)]
pub unsafe fn set_round_mode(&mut self, round_mode: RoundMode) {
self.round_mode = round_mode;
}
/// Set if we should trim a trailing `".0"` from floats.
/// Unsafe, use the builder API for option validation.
///
/// # Safety
///
/// Always safe, just marked as unsafe for API compatibility.
#[inline(always)]
pub unsafe fn set_trim_floats(&mut self, trim_floats: bool) {
self.trim_floats = trim_floats;
}
/// Set the character to designate the exponent component of a float.
///
/// # Safety
///
/// Always safe, but may produce invalid output if the exponent
/// is not a valid ASCII character.
#[inline(always)]
pub unsafe fn set_exponent(&mut self, exponent: u8) {
self.exponent = exponent;
}
/// Set the character to separate the integer from the fraction components.
///
/// # Safety
///
/// Always safe, but may produce invalid output if the decimal point
/// is not a valid ASCII character.
#[inline(always)]
pub unsafe fn set_decimal_point(&mut self, decimal_point: u8) {
self.decimal_point = decimal_point;
}
/// Set the string representation for `NaN`.
/// Unsafe, use the builder API for option validation.
///
/// # Safety
///
/// Unsafe if `nan_string.len() > MAX_SPECIAL_STRING_LENGTH`. This might
/// cause a special string larger than the buffer length to be written,
/// causing a buffer overflow, potentially a severe security vulnerability.
#[inline(always)]
pub unsafe fn set_nan_string(&mut self, nan_string: Option<&'static [u8]>) {
self.nan_string = nan_string
}
/// Set the short string representation for `Infinity`
/// Unsafe, use the builder API for option validation.
///
/// # Safety
///
/// Unsafe if `nan_string.len() > MAX_SPECIAL_STRING_LENGTH`. This might
/// cause a special string larger than the buffer length to be written,
/// causing a buffer overflow, potentially a severe security vulnerability.
#[inline(always)]
pub unsafe fn set_inf_string(&mut self, inf_string: Option<&'static [u8]>) {
self.inf_string = inf_string
}
// BUILDERS
/// Get WriteFloatOptionsBuilder as a static function.
#[inline(always)]
pub const fn builder() -> OptionsBuilder {
OptionsBuilder::new()
}
/// Create OptionsBuilder using existing values.
#[inline(always)]
pub const fn rebuild(&self) -> OptionsBuilder {
OptionsBuilder {
max_significant_digits: self.max_significant_digits,
min_significant_digits: self.min_significant_digits,
positive_exponent_break: self.positive_exponent_break,
negative_exponent_break: self.negative_exponent_break,
round_mode: self.round_mode,
trim_floats: self.trim_floats,
exponent: self.exponent,
decimal_point: self.decimal_point,
nan_string: self.nan_string,
inf_string: self.inf_string,
}
}
}
impl Default for Options {
#[inline(always)]
fn default() -> Self {
Self::new()
}
}
impl WriteOptions for Options {
#[inline(always)]
fn is_valid(&self) -> bool {
Self::is_valid(self)
}
#[inline(always)]
fn buffer_size<T: FormattedSize, const FORMAT: u128>(&self) -> usize {
let format = NumberFormat::<{ FORMAT }> {};
// At least 2 for the decimal point and sign.
let mut count: usize = 2;
// First need to calculate maximum number of digits from leading or
// trailing zeros, IE, the exponent break.
if !format.no_exponent_notation() {
let min_exp = self.negative_exponent_break().map_or(-5, |x| x.get());
let max_exp = self.positive_exponent_break().map_or(9, |x| x.get());
let exp = min_exp.abs().max(max_exp) as usize;
if cfg!(feature = "power-of-two") && exp < 13 {
// 11 for the exponent digits in binary, 1 for the sign, 1 for the symbol
count += 13;
} else if exp < 5 {
// 3 for the exponent digits in decimal, 1 for the sign, 1 for the symbol
count += 5;
} else {
// More leading or trailing zeros than the exponent digits.
count += exp;
}
} else if cfg!(feature = "power-of-two") {
// Min is 2^-1075.
count += 1075;
} else {
// Min is 10^-324.
count += 324;
}
// Now add the number of significant digits.
let radix = format.radix();
let formatted_digits = if radix == 10 {
// Really should be 18, but add some extra to be cautious.
28
} else {
// BINARY:
// 53 significant mantissa bits for binary, add a few extra.
// RADIX:
// Our limit is `delta`. The maximum relative delta is 2.22e-16,
// around 1. If we have values below 1, our delta is smaller, but
// the max fraction is also a lot smaller. Above, and our fraction
// must be < 1.0, so our delta is less significant. Therefore,
// if our fraction is just less than 1, for a float near 2.0,
// we can do at **maximum** 33 digits (for base 3). Let's just
// assume it's a lot higher, and go with 64.
64
};
let digits = if let Some(max_digits) = self.max_significant_digits() {
formatted_digits.min(max_digits.get())
} else {
formatted_digits
};
let digits = if let Some(min_digits) = self.min_significant_digits() {
digits.max(min_digits.get())
} else {
formatted_digits
};
count += digits;
count
}
}
/// Define unwrap_or_zero for a custom type.
macro_rules! unwrap_or_zero {
($name:ident, $opt:ident, $t:ident) => {
/// Unwrap `Option` as a const fn.
#[inline(always)]
const fn $name(option: $opt) -> $t {
match option {
Some(x) => x.get(),
None => 0,
}
}
};
}
unwrap_or_zero!(unwrap_or_zero_usize, OptionUsize, usize);
unwrap_or_zero!(unwrap_or_zero_i32, OptionI32, i32);
/// Unwrap `Option` as a const fn.
#[inline(always)]
const fn unwrap_or_max_usize(option: OptionUsize) -> usize {
match option {
Some(x) => x.get(),
None => usize::MAX,
}
}
/// Unwrap `Option` as a const fn.
#[inline(always)]
const fn unwrap_str(option: Option<&'static [u8]>) -> &'static [u8] {
match option {
Some(x) => x,
None => &[],
}
}
// PRE-DEFINED CONSTANTS
// ---------------------
// Only constants that differ from the standard version are included.
// SAFETY: all of these are safe, since they are checked to be valid
// after calling `build_unchecked`. Furthermore, even though the methods
// are marked as `unsafe`, none of the produced options can cause memory
// safety issues since the special strings are smaller than the buffer size.
/// Standard number format.
#[rustfmt::skip]
pub const STANDARD: Options = Options::new();
const_assert!(STANDARD.is_valid());
/// Numerical format with a decimal comma.
/// This is the standard numerical format for most of the world.
#[rustfmt::skip]
pub const DECIMAL_COMMA: Options = unsafe {
Options::builder()
.decimal_point(b',')
.build_unchecked()
};
const_assert!(DECIMAL_COMMA.is_valid());
/// Numerical format for hexadecimal floats, which use a `p` exponent.
#[rustfmt::skip]
pub const HEX_FLOAT: Options = unsafe {
Options::builder()
.exponent(b'p')
.build_unchecked()
};
const_assert!(HEX_FLOAT.is_valid());
/// Numerical format where `^` is used as the exponent notation character.
/// This isn't very common, but is useful when `e` or `p` are valid digits.
#[rustfmt::skip]
pub const CARAT_EXPONENT: Options = unsafe {
Options::builder()
.exponent(b'^')
.build_unchecked()
};
const_assert!(CARAT_EXPONENT.is_valid());
/// Number format for a Rust literal floating-point number.
#[rustfmt::skip]
pub const RUST_LITERAL: Options = unsafe {
Options::builder()
.nan_string(options::RUST_LITERAL)
.inf_string(options::RUST_LITERAL)
.build_unchecked()
};
const_assert!(RUST_LITERAL.is_valid());
/// Number format for a Python literal floating-point number.
#[rustfmt::skip]
pub const PYTHON_LITERAL: Options = unsafe {
Options::builder()
.nan_string(options::PYTHON_LITERAL)
.inf_string(options::PYTHON_LITERAL)
.build_unchecked()
};
const_assert!(PYTHON_LITERAL.is_valid());
/// Number format for a C++ literal floating-point number.
#[rustfmt::skip]
pub const CXX_LITERAL: Options = unsafe {
Options::builder()
.nan_string(options::CXX_LITERAL_NAN)
.inf_string(options::CXX_LITERAL_INF)
.build_unchecked()
};
const_assert!(CXX_LITERAL.is_valid());
/// Number format for a C literal floating-point number.
#[rustfmt::skip]
pub const C_LITERAL: Options = unsafe {
Options::builder()
.nan_string(options::C_LITERAL_NAN)
.inf_string(options::C_LITERAL_INF)
.build_unchecked()
};
const_assert!(CXX_LITERAL.is_valid());
/// Number format for a Ruby literal floating-point number.
#[rustfmt::skip]
pub const RUBY_LITERAL: Options = unsafe {
Options::builder()
.nan_string(options::RUBY)
.inf_string(options::RUBY)
.build_unchecked()
};
const_assert!(RUBY_LITERAL.is_valid());
/// Number format to parse a Ruby float from string.
#[rustfmt::skip]
pub const RUBY_STRING: Options = unsafe {
Options::builder()
.nan_string(options::RUBY)
.inf_string(options::RUBY)
.build_unchecked()
};
const_assert!(RUBY_STRING.is_valid());
/// Number format for a Swift literal floating-point number.
#[rustfmt::skip]
pub const SWIFT_LITERAL: Options = unsafe {
Options::builder()
.nan_string(options::SWIFT_LITERAL)
.inf_string(options::SWIFT_LITERAL)
.build_unchecked()
};
const_assert!(SWIFT_LITERAL.is_valid());
/// Number format for a Go literal floating-point number.
#[rustfmt::skip]
pub const GO_LITERAL: Options = unsafe {
Options::builder()
.nan_string(options::GO_LITERAL)
.inf_string(options::GO_LITERAL)
.build_unchecked()
};
const_assert!(GO_LITERAL.is_valid());
/// Number format for a Haskell literal floating-point number.
#[rustfmt::skip]
pub const HASKELL_LITERAL: Options = unsafe {
Options::builder()
.nan_string(options::HASKELL_LITERAL)
.inf_string(options::HASKELL_LITERAL)
.build_unchecked()
};
const_assert!(HASKELL_LITERAL.is_valid());
/// Number format to parse a Haskell float from string.
#[rustfmt::skip]
pub const HASKELL_STRING: Options = unsafe {
Options::builder()
.inf_string(options::HASKELL_STRING_INF)
.build_unchecked()
};
const_assert!(HASKELL_STRING.is_valid());
/// Number format for a Javascript literal floating-point number.
#[rustfmt::skip]
pub const JAVASCRIPT_LITERAL: Options = unsafe {
Options::builder()
.inf_string(options::JAVASCRIPT_INF)
.build_unchecked()
};
const_assert!(JAVASCRIPT_LITERAL.is_valid());
/// Number format to parse a Javascript float from string.
#[rustfmt::skip]
pub const JAVASCRIPT_STRING: Options = unsafe {
Options::builder()
.inf_string(options::JAVASCRIPT_INF)
.build_unchecked()
};
const_assert!(JAVASCRIPT_STRING.is_valid());
/// Number format for a Perl literal floating-point number.
#[rustfmt::skip]
pub const PERL_LITERAL: Options = unsafe {
Options::builder()
.nan_string(options::PERL_LITERAL)
.inf_string(options::PERL_LITERAL)
.build_unchecked()
};
const_assert!(PERL_LITERAL.is_valid());
/// Number format for a PHP literal floating-point number.
#[rustfmt::skip]
pub const PHP_LITERAL: Options = unsafe {
Options::builder()
.nan_string(options::PHP_LITERAL_NAN)
.inf_string(options::PHP_LITERAL_INF)
.build_unchecked()
};
const_assert!(PHP_LITERAL.is_valid());
/// Number format for a Java literal floating-point number.
#[rustfmt::skip]
pub const JAVA_LITERAL: Options = unsafe {
Options::builder()
.nan_string(options::JAVA_LITERAL)
.inf_string(options::JAVA_LITERAL)
.build_unchecked()
};
const_assert!(JAVA_LITERAL.is_valid());
/// Number format to parse a Java float from string.
#[rustfmt::skip]
pub const JAVA_STRING: Options = unsafe {
Options::builder()
.inf_string(options::JAVA_STRING_INF)
.build_unchecked()
};
const_assert!(JAVA_STRING.is_valid());
/// Number format for an R literal floating-point number.
#[rustfmt::skip]
pub const R_LITERAL: Options = unsafe {
Options::builder()
.inf_string(options::R_LITERAL_INF)
.build_unchecked()
};
const_assert!(R_LITERAL.is_valid());
/// Number format for a Kotlin literal floating-point number.
#[rustfmt::skip]
pub const KOTLIN_LITERAL: Options = unsafe {
Options::builder()
.nan_string(options::KOTLIN_LITERAL)
.inf_string(options::KOTLIN_LITERAL)
.build_unchecked()
};
const_assert!(KOTLIN_LITERAL.is_valid());
/// Number format to parse a Kotlin float from string.
#[rustfmt::skip]
pub const KOTLIN_STRING: Options = unsafe {
Options::builder()
.inf_string(options::KOTLIN_STRING_INF)
.build_unchecked()
};
const_assert!(KOTLIN_STRING.is_valid());
/// Number format for a Julia literal floating-point number.
#[rustfmt::skip]
pub const JULIA_LITERAL: Options = unsafe {
Options::builder()
.inf_string(options::JULIA_LITERAL_INF)
.build_unchecked()
};
const_assert!(JULIA_LITERAL.is_valid());
/// Number format for a C# literal floating-point number.
#[rustfmt::skip]
pub const CSHARP_LITERAL: Options = unsafe {
Options::builder()
.nan_string(options::CSHARP_LITERAL)
.inf_string(options::CSHARP_LITERAL)
.build_unchecked()
};
const_assert!(CSHARP_LITERAL.is_valid());
/// Number format to parse a C# float from string.
#[rustfmt::skip]
pub const CSHARP_STRING: Options = unsafe {
Options::builder()
.inf_string(options::CSHARP_STRING_INF)
.build_unchecked()
};
const_assert!(CSHARP_STRING.is_valid());
/// Number format for a Kawa literal floating-point number.
#[rustfmt::skip]
pub const KAWA_LITERAL: Options = unsafe {
Options::builder()
.nan_string(options::KAWA)
.inf_string(options::KAWA)
.build_unchecked()
};
const_assert!(KAWA_LITERAL.is_valid());
/// Number format to parse a Kawa float from string.
#[rustfmt::skip]
pub const KAWA_STRING: Options = unsafe {
Options::builder()
.nan_string(options::KAWA)
.inf_string(options::KAWA)
.build_unchecked()
};
const_assert!(KAWA_STRING.is_valid());
/// Number format for a Gambit-C literal floating-point number.
#[rustfmt::skip]
pub const GAMBITC_LITERAL: Options = unsafe {
Options::builder()
.nan_string(options::GAMBITC)
.inf_string(options::GAMBITC)
.build_unchecked()
};
const_assert!(GAMBITC_LITERAL.is_valid());
/// Number format to parse a Gambit-C float from string.
#[rustfmt::skip]
pub const GAMBITC_STRING: Options = unsafe {
Options::builder()
.nan_string(options::GAMBITC)
.inf_string(options::GAMBITC)
.build_unchecked()
};
const_assert!(GAMBITC_STRING.is_valid());
/// Number format for a Guile literal floating-point number.
#[rustfmt::skip]
pub const GUILE_LITERAL: Options = unsafe {
Options::builder()
.nan_string(options::GUILE)
.inf_string(options::GUILE)
.build_unchecked()
};
const_assert!(GUILE_LITERAL.is_valid());
/// Number format to parse a Guile float from string.
#[rustfmt::skip]
pub const GUILE_STRING: Options = unsafe {
Options::builder()
.nan_string(options::GUILE)
.inf_string(options::GUILE)
.build_unchecked()
};
const_assert!(GUILE_STRING.is_valid());
/// Number format for a Clojure literal floating-point number.
#[rustfmt::skip]
pub const CLOJURE_LITERAL: Options = unsafe {
Options::builder()
.nan_string(options::CLOJURE_LITERAL)
.inf_string(options::CLOJURE_LITERAL)
.build_unchecked()
};
const_assert!(CLOJURE_LITERAL.is_valid());
/// Number format to parse a Clojure float from string.
#[rustfmt::skip]
pub const CLOJURE_STRING: Options = unsafe {
Options::builder()
.inf_string(options::CLOJURE_STRING_INF)
.build_unchecked()
};
const_assert!(CLOJURE_STRING.is_valid());
/// Number format for an Erlang literal floating-point number.
#[rustfmt::skip]
pub const ERLANG_LITERAL: Options = unsafe {
Options::builder()
.nan_string(options::ERLANG_LITERAL_NAN)
.build_unchecked()
};
const_assert!(ERLANG_LITERAL.is_valid());
/// Number format to parse an Erlang float from string.
#[rustfmt::skip]
pub const ERLANG_STRING: Options = unsafe {
Options::builder()
.nan_string(options::ERLANG_STRING)
.inf_string(options::ERLANG_STRING)
.build_unchecked()
};
const_assert!(ERLANG_STRING.is_valid());
/// Number format for an Elm literal floating-point number.
#[rustfmt::skip]
pub const ELM_LITERAL: Options = unsafe {
Options::builder()
.nan_string(options::ELM_LITERAL)
.inf_string(options::ELM_LITERAL)
.build_unchecked()
};
const_assert!(ELM_LITERAL.is_valid());
/// Number format to parse an Elm float from string.
#[rustfmt::skip]
pub const ELM_STRING: Options = unsafe {
Options::builder()
.nan_string(options::ELM_STRING_NAN)
.inf_string(options::ELM_STRING_INF)
.build_unchecked()
};
const_assert!(ELM_STRING.is_valid());
/// Number format for a Scala literal floating-point number.
#[rustfmt::skip]
pub const SCALA_LITERAL: Options = unsafe {
Options::builder()
.nan_string(options::SCALA_LITERAL)
.inf_string(options::SCALA_LITERAL)
.build_unchecked()
};
const_assert!(SCALA_LITERAL.is_valid());
/// Number format to parse a Scala float from string.
#[rustfmt::skip]
pub const SCALA_STRING: Options = unsafe {
Options::builder()
.inf_string(options::SCALA_STRING_INF)
.build_unchecked()
};
const_assert!(SCALA_STRING.is_valid());
/// Number format for an Elixir literal floating-point number.
#[rustfmt::skip]
pub const ELIXIR_LITERAL: Options = unsafe {
Options::builder()
.nan_string(options::ELIXIR)
.inf_string(options::ELIXIR)
.build_unchecked()
};
const_assert!(ELIXIR_LITERAL.is_valid());
/// Number format to parse an Elixir float from string.
#[rustfmt::skip]
pub const ELIXIR_STRING: Options = unsafe {
Options::builder()
.nan_string(options::ELIXIR)
.inf_string(options::ELIXIR)
.build_unchecked()
};
const_assert!(ELIXIR_STRING.is_valid());
/// Number format for a FORTRAN literal floating-point number.
#[rustfmt::skip]
pub const FORTRAN_LITERAL: Options = unsafe {
Options::builder()
.nan_string(options::FORTRAN_LITERAL)
.inf_string(options::FORTRAN_LITERAL)
.build_unchecked()
};
const_assert!(FORTRAN_LITERAL.is_valid());
/// Number format for a D literal floating-point number.
#[rustfmt::skip]
pub const D_LITERAL: Options = unsafe {
Options::builder()
.nan_string(options::D_LITERAL)
.inf_string(options::D_LITERAL)
.build_unchecked()
};
const_assert!(D_LITERAL.is_valid());
/// Number format for a Coffeescript literal floating-point number.
#[rustfmt::skip]
pub const COFFEESCRIPT_LITERAL: Options = unsafe {
Options::builder()
.inf_string(options::COFFEESCRIPT_INF)
.build_unchecked()
};
const_assert!(COFFEESCRIPT_LITERAL.is_valid());
/// Number format to parse a Coffeescript float from string.
#[rustfmt::skip]
pub const COFFEESCRIPT_STRING: Options = unsafe {
Options::builder()
.inf_string(options::COFFEESCRIPT_INF)
.build_unchecked()
};
const_assert!(COFFEESCRIPT_STRING.is_valid());
/// Number format for a COBOL literal floating-point number.
#[rustfmt::skip]
pub const COBOL_LITERAL: Options = unsafe {
Options::builder()
.nan_string(options::COBOL)
.inf_string(options::COBOL)
.build_unchecked()
};
const_assert!(COBOL_LITERAL.is_valid());
/// Number format to parse a COBOL float from string.
#[rustfmt::skip]
pub const COBOL_STRING: Options = unsafe {
Options::builder()
.nan_string(options::COBOL)
.inf_string(options::COBOL)
.build_unchecked()
};
const_assert!(COBOL_STRING.is_valid());
/// Number format for an F# literal floating-point number.
#[rustfmt::skip]
pub const FSHARP_LITERAL: Options = unsafe {
Options::builder()
.nan_string(options::FSHARP_LITERAL_NAN)
.inf_string(options::FSHARP_LITERAL_INF)
.build_unchecked()
};
const_assert!(FSHARP_LITERAL.is_valid());
/// Number format for a Visual Basic literal floating-point number.
#[rustfmt::skip]
pub const VB_LITERAL: Options = unsafe {
Options::builder()
.nan_string(options::VB_LITERAL)
.inf_string(options::VB_LITERAL)
.build_unchecked()
};
const_assert!(VB_LITERAL.is_valid());
/// Number format to parse a Visual Basic float from string.
#[rustfmt::skip]
pub const VB_STRING: Options = unsafe {
Options::builder()
.inf_string(options::VB_STRING_INF)
.build_unchecked()
};
const_assert!(VB_STRING.is_valid());
/// Number format for an OCaml literal floating-point number.
#[rustfmt::skip]
pub const OCAML_LITERAL: Options = unsafe {
Options::builder()
.nan_string(options::OCAML_LITERAL_NAN)
.inf_string(options::OCAML_LITERAL_INF)
.build_unchecked()
};
const_assert!(OCAML_LITERAL.is_valid());
/// Number format for an Objective-C literal floating-point number.
#[rustfmt::skip]
pub const OBJECTIVEC_LITERAL: Options = unsafe {
Options::builder()
.nan_string(options::OBJECTIVEC)
.inf_string(options::OBJECTIVEC)
.build_unchecked()
};
const_assert!(OBJECTIVEC_LITERAL.is_valid());
/// Number format to parse an Objective-C float from string.
#[rustfmt::skip]
pub const OBJECTIVEC_STRING: Options = unsafe {
Options::builder()
.nan_string(options::OBJECTIVEC)
.inf_string(options::OBJECTIVEC)
.build_unchecked()
};
const_assert!(OBJECTIVEC_STRING.is_valid());
/// Number format for an ReasonML literal floating-point number.
#[rustfmt::skip]
pub const REASONML_LITERAL: Options = unsafe {
Options::builder()
.nan_string(options::REASONML_LITERAL_NAN)
.inf_string(options::REASONML_LITERAL_INF)
.build_unchecked()
};
const_assert!(REASONML_LITERAL.is_valid());
/// Number format for a MATLAB literal floating-point number.
#[rustfmt::skip]
pub const MATLAB_LITERAL: Options = unsafe {
Options::builder()
.inf_string(options::MATLAB_LITERAL_INF)
.build_unchecked()
};
const_assert!(MATLAB_LITERAL.is_valid());
/// Number format for a Zig literal floating-point number.
#[rustfmt::skip]
pub const ZIG_LITERAL: Options = unsafe {
Options::builder()
.nan_string(options::ZIG_LITERAL)
.inf_string(options::ZIG_LITERAL)
.build_unchecked()
};
const_assert!(ZIG_LITERAL.is_valid());
/// Number format for a Safe literal floating-point number.
#[rustfmt::skip]
pub const SAGE_LITERAL: Options = unsafe {
Options::builder()
.inf_string(options::SAGE_LITERAL_INF)
.build_unchecked()
};
const_assert!(SAGE_LITERAL.is_valid());
/// Number format for a JSON literal floating-point number.
#[rustfmt::skip]
pub const JSON: Options = unsafe {
Options::builder()
.nan_string(options::JSON)
.inf_string(options::JSON)
.build_unchecked()
};
const_assert!(JSON.is_valid());
/// Number format for a TOML literal floating-point number.
#[rustfmt::skip]
pub const TOML: Options = unsafe {
Options::builder()
.nan_string(options::TOML)
.inf_string(options::TOML)
.build_unchecked()
};
const_assert!(TOML.is_valid());
/// Number format for a YAML literal floating-point number.
#[rustfmt::skip]
pub const YAML: Options = JSON;
/// Number format for an XML literal floating-point number.
#[rustfmt::skip]
pub const XML: Options = unsafe {
Options::builder()
.inf_string(options::XML_INF)
.build_unchecked()
};
const_assert!(XML.is_valid());
/// Number format for a SQLite literal floating-point number.
#[rustfmt::skip]
pub const SQLITE: Options = unsafe {
Options::builder()
.nan_string(options::SQLITE)
.inf_string(options::SQLITE)
.build_unchecked()
};
const_assert!(SQLITE.is_valid());
/// Number format for a PostgreSQL literal floating-point number.
#[rustfmt::skip]
pub const POSTGRESQL: Options = unsafe {
Options::builder()
.nan_string(options::POSTGRESQL)
.inf_string(options::POSTGRESQL)
.build_unchecked()
};
const_assert!(POSTGRESQL.is_valid());
/// Number format for a MySQL literal floating-point number.
#[rustfmt::skip]
pub const MYSQL: Options = unsafe {
Options::builder()
.nan_string(options::MYSQL)
.inf_string(options::MYSQL)
.build_unchecked()
};
const_assert!(MYSQL.is_valid());
/// Number format for a MongoDB literal floating-point number.
#[rustfmt::skip]
pub const MONGODB: Options = unsafe {
Options::builder()
.inf_string(options::MONGODB_INF)
.build_unchecked()
};
const_assert!(MONGODB.is_valid());