1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
// Copyright 2015 Joe Neeman.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms
//! This crate gives an implementation of Wu and Manber's algorithm for finding one of several
//! strings (which we will call "needles") in a much larger string (the "haystack"). This is not
//! to be confused with Wu and Manber's algorithm for fuzzy matching.
//!
//! The Wu-Manber algorithm is very efficient when all of the strings to be matched are long. It
//! requires a pre-processing step with a fair amount of memory overhead -- currently about 32kb in
//! this implementation, but future improvements may reduce that when there are not too many
//! needles.
//!
//! This implementation supports a maximum of 65536 needles, each of which can be at most 65536
//! bytes long. These requirements may be relaxed in the future.
//!
//! # Example
//! ```
//! use wu_manber::{Match, TwoByteWM};
//! let needles = vec!["quick", "brown", "lazy", "wombat"];
//! let haystack = "The quick brown fox jumps over the lazy dog.";
//! let searcher = TwoByteWM::new(&needles);
//! let mat = searcher.find(haystack).next().unwrap();
//! assert_eq!(mat, Match { start: 4, end: 9, pat_idx: 0 });
//! ```
use std::cmp::min;
#[cfg(test)]
extern crate aho_corasick;
/// This is the type for indexing into the bytes of the needles. Its size determines the maximum
/// length of a needle.
type NByteIdx = u16;
/// This is the type for indexing into the list of needles. Its size determines the maximum number
/// of needles.
type NeedleIdx = u16;
/// `TwoByteWM` stores the precomputed tables needed for a two-byte-wide implementation of the
/// Wu-Manber algorithm.
///
/// "Two-byte-wide" means that the search phase in the Wu-Manber algorithm uses spans of two bytes
/// to look for potential matches. This is suitable for moderately sized sets of needles; if there
/// are too many needles then it might be faster to use spans of three bytes (but that isn't yet
/// implemented by this crate).
#[derive(Debug)]
pub struct TwoByteWM {
/// The needles that we are trying to match against, and their indices.
///
/// Each of the needles has length (in bytes) at least 2. They are sorted in increasing order
/// of the hash value of their two critical bytes.
needles: Vec<(usize, Vec<u8>)>,
/// For each of the needles above, this contains the first two bytes, concatenated into a
/// `u16`.
///
/// This `Vec` is indexed in the same way as `needles`.
prefix: Vec<u16>,
/// The minimimum length of any needle.
pat_len: NByteIdx,
/// If `shift[HashFn(a, b)] = i` then no needle contains the two-byte string `ab` starting
/// anywhere between positions `pat_len - 2 - i` and `pat_len - 2`.
///
/// Note that because this `Vec` can be quite long, we might save a substantial amount of space
/// by shrinking the size of `NByteIdx`.
shift: Vec<NByteIdx>,
/// If `hash[HashFn(a, b)] = i` then the needles whose critical bytes hash to `HashFn(a, b)`
/// begin at `needles[i]`.
///
/// Note that because this `Vec` can be quite long, we might save a substantial amount of space
/// by shrinking the size of `NeedleIdx`.
hash: Vec<NeedleIdx>,
}
#[derive(Debug, PartialEq)]
pub struct Match {
pub start: usize,
pub end: usize,
pub pat_idx: usize,
}
pub struct Matches<'a, P: AsRef<[u8]>> {
wm: &'a TwoByteWM,
haystack: P,
cur_pos: usize,
}
impl<'a, P> Iterator for Matches<'a, P>
where
P: AsRef<[u8]>,
{
type Item = Match;
fn next(&mut self) -> Option<Match> {
self.wm
.find_from(self.haystack.as_ref(), self.cur_pos)
.map(|m| {
self.cur_pos = m.end;
m
})
}
}
/// For now, we default to this hash function (which is the one from the original paper of Wu and
/// Manber). In the future, we may want to look for a better one depending on the needles.
fn hash_fn(a: u8, b: u8) -> NeedleIdx {
((a as NeedleIdx) << 5) + (b as NeedleIdx)
}
const HASH_MAX: usize = (0xFFusize << 5) + 0xFF;
impl TwoByteWM {
fn pat(&self, p_idx: NeedleIdx) -> &[u8] {
&self.needles[p_idx as usize].1
}
fn pat_idx(&self, p_idx: NeedleIdx) -> usize {
self.needles[p_idx as usize].0
}
/// Creates lookup tables to efficiently search for the given needles.
///
/// The order of `needles` is significant, since all `Match`es returned from this `TwoByteWM`
/// will include an index into `needles` saying which needle matched.
pub fn new<I, P>(needles: I) -> TwoByteWM
where
P: AsRef<[u8]>,
I: IntoIterator<Item = P>,
{
let needles: Vec<_> = needles.into_iter().map(|s| s.as_ref().to_vec()).collect();
if needles.is_empty() {
panic!("cannot create TwoByteWM from an empty set of needles");
} else if needles.len() > NeedleIdx::max_value() as usize {
panic!("too many needles");
}
let pat_len = needles.iter().map(|p| p.len()).min().unwrap();
if pat_len < 2 {
panic!("all needles must have length (in bytes) at least 2");
} else if pat_len > NByteIdx::max_value() as usize {
panic!("these needles are too long");
}
let pat_len = pat_len as NByteIdx;
let h = |p: &[u8]| hash_fn(p[(pat_len-2) as usize], p[(pat_len-1) as usize]);
let mut needles: Vec<_> = needles.into_iter().enumerate().collect();
needles.sort_by(|p, q| h(&p.1).cmp(&h(&q.1)));
let needles = needles;
let prefix: Vec<_> = needles.iter()
.map(|p| ((p.1[0] as u16) << 8) + (p.1[1] as u16))
.collect();
let mut hash = vec![0; HASH_MAX + 2];
for (p_idx, &(_, ref p)) in needles.iter().enumerate().rev() {
let h_idx = h(&p) as usize;
hash[h_idx] = p_idx as NeedleIdx;
if hash[h_idx + 1] == 0 {
hash[h_idx + 1] = p_idx as NeedleIdx + 1;
}
}
let mut shift = vec![pat_len - 1; HASH_MAX + 1];
for &(_, ref p) in &needles {
for p_pos in 0..(pat_len - 1) {
let h = hash_fn(p[p_pos as usize], p[(p_pos + 1) as usize]);
shift[h as usize] = min(shift[h as usize], pat_len - p_pos - 2);
}
}
TwoByteWM {
needles: needles,
prefix: prefix,
pat_len: pat_len,
shift: shift,
hash: hash,
}
}
/// Searches for a single match, starting from the given byte offset.
pub fn find_from<P>(&self, haystack: P, offset: usize) -> Option<Match>
where
P: AsRef<[u8]>,
{
// `pos` points to the index in `haystack` that we are trying to align against the index
// `pat_len - 1` of the needles.
let pat_len = self.pat_len as usize;
let mut pos = offset + pat_len - 1;
let haystack = haystack.as_ref();
while pos <= haystack.len() - 1 {
let h = hash_fn(haystack[pos - 1], haystack[pos]) as usize;
let shift = self.shift[h] as usize;
if shift == 0 {
// We might have matched the end of some needle. Iterate over all the needles
// that we might have matched, and see if they match the beginning.
let a = haystack[1 + pos - pat_len];
let b = haystack[2 + pos - pat_len];
let prefix = ((a as u16) << 8) + (b as u16);
let mut found: Option<NeedleIdx> = None;
for p_idx in self.hash[h]..self.hash[h+1] {
if self.prefix[p_idx as usize] == prefix {
// The prefix matches too, so now check for the full match.
let p = self.pat(p_idx);
if haystack[(1 + pos - pat_len)..].starts_with(&p) {
found = match found {
None => Some(p_idx),
Some(q_idx) => {
let q = self.pat(q_idx);
Some(if p.len() < q.len() { p_idx } else { q_idx })
}
}
}
}
}
if let Some(p_idx) = found {
return Some(Match {
start: 1 + pos - pat_len,
end: 1 + pos - pat_len + self.pat(p_idx).len(),
pat_idx: self.pat_idx(p_idx),
})
}
pos += 1;
} else {
pos += shift;
}
}
None
}
/// Returns an iterator over non-overlapping matches.
pub fn find<'a, 'b, P>(&'a self, haystack: P) -> Matches<'a, P>
where
P: AsRef<[u8]> + 'b,
{
Matches {
wm: &self,
haystack,
cur_pos: 0,
}
}
}
#[cfg(test)]
mod tests {
use ::{Match, TwoByteWM};
use aho_corasick::{AcAutomaton, Automaton};
#[test]
fn examples() {
let needles = vec![
"fox",
"brown",
"vwxyz",
"yz",
"ijk",
"ijklm",
];
let haystacks = vec![
"The quick brown fox jumped over the lazy dog.",
"abcdefghijklmnopqrstuvwxyz",
];
let wm = TwoByteWM::new(&needles);
let ac = AcAutomaton::new(&needles);
for hay in &haystacks {
let wm_answer: Vec<Match> = wm.find(hay).collect();
let ac_answer: Vec<Match> = ac.find(hay)
.map(|m| Match { start: m.start, end: m.end, pat_idx: m.pati })
.collect();
assert_eq!(wm_answer, ac_answer);
}
}
#[test]
fn binary() {
let mut needles: Vec<Vec<u8>> = Vec::new();
needles.push("foo".into());
needles.push("\x00\x0f".into());
let haystack: Vec<u8> = "--foo-b\x00\x0f".into();
let wm = TwoByteWM::new(&needles);
let results = wm.find(haystack).collect::<Vec<_>>();
assert_eq!(results.len(), 2, "expected 2 results");
assert_eq!(results[0].pat_idx, 0);
assert_eq!(results[0].start, 2);
assert_eq!(results[0].end, 5);
assert_eq!(results[1].pat_idx, 1);
assert_eq!(results[1].start, 7);
assert_eq!(results[1].end, 9);
}
#[test]
fn match_at_beginning() {
let needles = vec![
"Hello world",
"it is a beautiful day",
"somewhere."
];
let haystack = "it is a beautiful day in Cairo";
let wm = TwoByteWM::new(&needles);
let results = wm.find(haystack).collect::<Vec<_>>();
assert_eq!(results.len(), 1);
assert_eq!(results[0].pat_idx, 1);
}
}