1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
//! This module implements compiler logic related to name/value binding
//! definitions (that is, attribute sets and let-expressions).
//!
//! In the case of recursive scopes these cases share almost all of their
//! (fairly complex) logic.
use std::iter::Peekable;
use rnix::ast::HasEntry;
use rowan::ast::AstChildren;
use crate::spans::{EntireFile, OrEntireFile};
use super::*;
type PeekableAttrs = Peekable<AstChildren<ast::Attr>>;
/// What kind of bindings scope is being compiled?
#[derive(Clone, Copy, PartialEq)]
enum BindingsKind {
/// Standard `let ... in ...`-expression.
LetIn,
/// Non-recursive attribute set.
Attrs,
/// Recursive attribute set.
RecAttrs,
}
impl BindingsKind {
fn is_attrs(&self) -> bool {
matches!(self, BindingsKind::Attrs | BindingsKind::RecAttrs)
}
}
// Internal representation of an attribute set used for merging sets, or
// inserting nested keys.
#[derive(Clone)]
struct AttributeSet {
/// Original span at which this set was first encountered.
span: Span,
/// Tracks the kind of set (rec or not).
kind: BindingsKind,
/// All inherited entries
inherits: Vec<ast::Inherit>,
/// All internal entries
entries: Vec<(Span, PeekableAttrs, ast::Expr)>,
}
impl ToSpan for AttributeSet {
fn span_for(&self, _: &codemap::File) -> Span {
self.span
}
}
impl AttributeSet {
fn from_ast(c: &Compiler, node: &ast::AttrSet) -> Self {
AttributeSet {
span: c.span_for(node),
// Kind of the attrs depends on the first time it is
// encountered. We actually believe this to be a Nix
// bug: https://github.com/NixOS/nix/issues/7111
kind: if node.rec_token().is_some() {
BindingsKind::RecAttrs
} else {
BindingsKind::Attrs
},
inherits: ast::HasEntry::inherits(node).collect(),
entries: ast::HasEntry::attrpath_values(node)
.map(|entry| {
let span = c.span_for(&entry);
(
span,
entry.attrpath().unwrap().attrs().peekable(),
entry.value().unwrap(),
)
})
.collect(),
}
}
}
// Data structures to track the bindings observed in the second pass, and
// forward the information needed to compile their value.
enum Binding {
InheritFrom {
namespace: ast::Expr,
name: SmolStr,
span: Span,
},
Plain {
expr: ast::Expr,
},
Set(AttributeSet),
}
impl Binding {
/// Merge the provided value into the current binding, or emit an
/// error if this turns out to be impossible.
fn merge(
&mut self,
c: &mut Compiler,
span: Span,
mut remaining_path: PeekableAttrs,
value: ast::Expr,
) {
match self {
Binding::InheritFrom { name, ref span, .. } => {
c.emit_error(span, ErrorKind::UnmergeableInherit { name: name.clone() })
}
// If the value is not yet a nested binding, flip the representation
// and recurse.
Binding::Plain { expr } => match expr {
ast::Expr::AttrSet(existing) => {
let nested = AttributeSet::from_ast(c, existing);
*self = Binding::Set(nested);
self.merge(c, span, remaining_path, value);
}
_ => c.emit_error(&value, ErrorKind::UnmergeableValue),
},
// If the value is nested further, it is simply inserted into the
// bindings with its full path and resolved recursively further
// down.
Binding::Set(existing) if remaining_path.peek().is_some() => {
existing.entries.push((span, remaining_path, value))
}
Binding::Set(existing) => {
if let ast::Expr::AttrSet(new) = value {
existing.inherits.extend(ast::HasEntry::inherits(&new));
existing
.entries
.extend(ast::HasEntry::attrpath_values(&new).map(|entry| {
let span = c.span_for(&entry);
(
span,
entry.attrpath().unwrap().attrs().peekable(),
entry.value().unwrap(),
)
}));
} else {
// This branch is unreachable because in cases where the
// path is empty (i.e. there is no further nesting), the
// previous try_merge function already verified that the
// expression is an attribute set.
// TODO(tazjin): Consider making this branch live by
// shuffling that check around and emitting a static error
// here instead of a runtime error.
unreachable!()
}
}
}
}
}
enum KeySlot {
/// There is no key slot (`let`-expressions do not emit their key).
None { name: SmolStr },
/// The key is statically known and has a slot.
Static { slot: LocalIdx, name: SmolStr },
/// The key is dynamic, i.e. only known at runtime, and must be compiled
/// into its slot.
Dynamic { slot: LocalIdx, attr: ast::Attr },
}
struct TrackedBinding {
key_slot: KeySlot,
value_slot: LocalIdx,
binding: Binding,
}
impl TrackedBinding {
/// Does this binding match the given key?
///
/// Used to determine which binding to merge another one into.
fn matches(&self, key: &str) -> bool {
match &self.key_slot {
KeySlot::None { name } => name == key,
KeySlot::Static { name, .. } => name == key,
KeySlot::Dynamic { .. } => false,
}
}
}
struct TrackedBindings {
bindings: Vec<TrackedBinding>,
}
impl TrackedBindings {
fn new() -> Self {
TrackedBindings { bindings: vec![] }
}
/// Attempt to merge an entry into an existing matching binding, assuming
/// that the provided binding is mergable (i.e. either a nested key or an
/// attribute set literal).
///
/// Returns true if the binding was merged, false if it needs to be compiled
/// separately as a new binding.
fn try_merge(
&mut self,
c: &mut Compiler,
span: Span,
name: &ast::Attr,
mut remaining_path: PeekableAttrs,
value: ast::Expr,
) -> bool {
// If the path has no more entries, and if the entry is not an
// attribute set literal, the entry can not be merged.
if remaining_path.peek().is_none() && !matches!(value, ast::Expr::AttrSet(_)) {
return false;
}
// If the first element of the path is not statically known, the entry
// can not be merged.
let name = match expr_static_attr_str(name) {
Some(name) => name,
None => return false,
};
// If there is no existing binding with this key, the entry can not be
// merged.
// TODO: benchmark whether using a map or something is useful over the
// `find` here
let binding = match self.bindings.iter_mut().find(|b| b.matches(&name)) {
Some(b) => b,
None => return false,
};
// No more excuses ... the binding can be merged!
binding.binding.merge(c, span, remaining_path, value);
true
}
/// Add a completely new binding to the tracked bindings.
fn track_new(&mut self, key_slot: KeySlot, value_slot: LocalIdx, binding: Binding) {
self.bindings.push(TrackedBinding {
key_slot,
value_slot,
binding,
});
}
}
/// Wrapper around the `ast::HasEntry` trait as that trait can not be
/// implemented for custom types.
trait HasEntryProxy {
fn inherits(&self) -> Box<dyn Iterator<Item = ast::Inherit>>;
fn attributes<'a>(
&self,
file: &'a codemap::File,
) -> Box<dyn Iterator<Item = (Span, PeekableAttrs, ast::Expr)> + 'a>;
}
impl<N: HasEntry> HasEntryProxy for N {
fn inherits(&self) -> Box<dyn Iterator<Item = ast::Inherit>> {
Box::new(ast::HasEntry::inherits(self))
}
fn attributes<'a>(
&self,
file: &'a codemap::File,
) -> Box<dyn Iterator<Item = (Span, PeekableAttrs, ast::Expr)> + 'a> {
Box::new(ast::HasEntry::attrpath_values(self).map(move |entry| {
(
entry.span_for(file),
entry.attrpath().unwrap().attrs().peekable(),
entry.value().unwrap(),
)
}))
}
}
impl HasEntryProxy for AttributeSet {
fn inherits(&self) -> Box<dyn Iterator<Item = ast::Inherit>> {
Box::new(self.inherits.clone().into_iter())
}
fn attributes<'a>(
&self,
_: &'a codemap::File,
) -> Box<dyn Iterator<Item = (Span, PeekableAttrs, ast::Expr)> + 'a> {
Box::new(self.entries.clone().into_iter())
}
}
/// AST-traversing functions related to bindings.
impl Compiler<'_, '_> {
/// Compile all inherits of a node with entries that do *not* have a
/// namespace to inherit from, and return the remaining ones that do.
fn compile_plain_inherits<N>(
&mut self,
slot: LocalIdx,
kind: BindingsKind,
count: &mut usize,
node: &N,
) -> Vec<(ast::Expr, SmolStr, Span)>
where
N: ToSpan + HasEntryProxy,
{
// Pass over all inherits, resolving only those without namespaces.
// Since they always resolve in a higher scope, we can just compile and
// declare them immediately.
//
// Inherits with namespaces are returned to the caller.
let mut inherit_froms: Vec<(ast::Expr, SmolStr, Span)> = vec![];
for inherit in node.inherits() {
if inherit.attrs().peekable().peek().is_none() {
self.emit_warning(&inherit, WarningKind::EmptyInherit);
continue;
}
match inherit.from() {
// Within a `let` binding, inheriting from the outer scope is a
// no-op *if* there are no dynamic bindings.
None if !kind.is_attrs() && !self.has_dynamic_ancestor() => {
self.emit_warning(&inherit, WarningKind::UselessInherit);
continue;
}
None => {
for attr in inherit.attrs() {
let name = match expr_static_attr_str(&attr) {
Some(name) => name,
None => {
self.emit_error(&attr, ErrorKind::DynamicKeyInScope("inherit"));
continue;
}
};
// If the identifier resolves statically in a `let`, it
// has precedence over dynamic bindings, and the inherit
// is useless.
if kind == BindingsKind::LetIn
&& matches!(
self.scope_mut().resolve_local(&name),
LocalPosition::Known(_)
)
{
self.emit_warning(&attr, WarningKind::UselessInherit);
continue;
}
*count += 1;
// Place key on the stack when compiling attribute sets.
if kind.is_attrs() {
self.emit_constant(name.as_str().into(), &attr);
let span = self.span_for(&attr);
self.scope_mut().declare_phantom(span, true);
}
// Place the value on the stack. Note that because plain
// inherits are always in the outer scope, the slot of
// *this* scope itself is used.
self.compile_identifier_access(slot, &name, &attr);
// In non-recursive attribute sets, the key slot must be
// a phantom (i.e. the identifier can not be resolved in
// this scope).
let idx = if kind == BindingsKind::Attrs {
let span = self.span_for(&attr);
self.scope_mut().declare_phantom(span, false)
} else {
self.declare_local(&attr, name)
};
self.scope_mut().mark_initialised(idx);
}
}
Some(from) => {
for attr in inherit.attrs() {
let name = match expr_static_attr_str(&attr) {
Some(name) => name,
None => {
self.emit_error(&attr, ErrorKind::DynamicKeyInScope("inherit"));
continue;
}
};
*count += 1;
inherit_froms.push((from.expr().unwrap(), name, self.span_for(&attr)));
}
}
}
}
inherit_froms
}
/// Declare all namespaced inherits, that is inherits which are inheriting
/// values from an attribute set.
///
/// This only ensures that the locals stack is aware of the inherits, it
/// does not yet emit bytecode that places them on the stack. This is up to
/// the owner of the `bindings` vector, which this function will populate.
fn declare_namespaced_inherits(
&mut self,
kind: BindingsKind,
inherit_froms: Vec<(ast::Expr, SmolStr, Span)>,
bindings: &mut TrackedBindings,
) {
for (from, name, span) in inherit_froms {
let key_slot = if kind.is_attrs() {
// In an attribute set, the keys themselves are placed on the
// stack but their stack slot is inaccessible (it is only
// consumed by `OpAttrs`).
KeySlot::Static {
slot: self.scope_mut().declare_phantom(span, false),
name: name.clone(),
}
} else {
KeySlot::None { name: name.clone() }
};
let value_slot = match kind {
// In recursive scopes, the value needs to be accessible on the
// stack.
BindingsKind::LetIn | BindingsKind::RecAttrs => {
self.declare_local(&span, name.clone())
}
// In non-recursive attribute sets, the value is inaccessible
// (only consumed by `OpAttrs`).
BindingsKind::Attrs => self.scope_mut().declare_phantom(span, false),
};
bindings.track_new(
key_slot,
value_slot,
Binding::InheritFrom {
namespace: from,
name,
span,
},
);
}
}
/// Declare all regular bindings (i.e. `key = value;`) in a bindings scope,
/// but do not yet compile their values.
fn declare_bindings<N>(
&mut self,
kind: BindingsKind,
count: &mut usize,
bindings: &mut TrackedBindings,
node: &N,
) where
N: ToSpan + HasEntryProxy,
{
for (span, mut path, value) in node.attributes(self.file) {
let key = path.next().unwrap();
if bindings.try_merge(self, span, &key, path.clone(), value.clone()) {
// Binding is nested, or already exists and was merged, move on.
continue;
}
*count += 1;
let key_span = self.span_for(&key);
let key_slot = match expr_static_attr_str(&key) {
Some(name) if kind.is_attrs() => KeySlot::Static {
name,
slot: self.scope_mut().declare_phantom(key_span, false),
},
Some(name) => KeySlot::None { name },
None if kind.is_attrs() => KeySlot::Dynamic {
attr: key,
slot: self.scope_mut().declare_phantom(key_span, false),
},
None => {
self.emit_error(&key, ErrorKind::DynamicKeyInScope("let-expression"));
continue;
}
};
let value_slot = match kind {
BindingsKind::LetIn | BindingsKind::RecAttrs => match &key_slot {
// In recursive scopes, the value needs to be accessible on the
// stack if it is statically known
KeySlot::None { name } | KeySlot::Static { name, .. } => {
self.declare_local(&key_span, name.as_str())
}
// Dynamic values are never resolvable (as their names are
// of course only known at runtime).
//
// Note: This branch is unreachable in `let`-expressions.
KeySlot::Dynamic { .. } => self.scope_mut().declare_phantom(key_span, false),
},
// In non-recursive attribute sets, the value is inaccessible
// (only consumed by `OpAttrs`).
BindingsKind::Attrs => self.scope_mut().declare_phantom(key_span, false),
};
let binding = if path.peek().is_some() {
Binding::Set(AttributeSet {
span,
kind: BindingsKind::Attrs,
inherits: vec![],
entries: vec![(span, path, value)],
})
} else {
Binding::Plain { expr: value }
};
bindings.track_new(key_slot, value_slot, binding);
}
}
/// Compile attribute set literals into equivalent bytecode.
///
/// This is complicated by a number of features specific to Nix attribute
/// sets, most importantly:
///
/// 1. Keys can be dynamically constructed through interpolation.
/// 2. Keys can refer to nested attribute sets.
/// 3. Attribute sets can (optionally) be recursive.
pub(super) fn compile_attr_set(&mut self, slot: LocalIdx, node: &ast::AttrSet) {
// Open a scope to track the positions of the temporaries used by the
// `OpAttrs` instruction.
self.scope_mut().begin_scope();
let kind = if node.rec_token().is_some() {
BindingsKind::RecAttrs
} else {
BindingsKind::Attrs
};
self.compile_bindings(slot, kind, node);
// Remove the temporary scope, but do not emit any additional cleanup
// (OpAttrs consumes all of these locals).
self.scope_mut().end_scope();
}
/// Emit definitions for all variables in the top-level global env passed to the evaluation (eg
/// local variables in the REPL)
pub(super) fn compile_env(&mut self, env: &FxHashMap<SmolStr, Value>) {
for (name, value) in env {
self.scope_mut().declare_constant(name.to_string());
self.emit_constant(value.clone(), &EntireFile);
}
}
/// Actually binds all tracked bindings by emitting the bytecode that places
/// them in their stack slots.
fn bind_values(&mut self, bindings: TrackedBindings) {
let mut value_indices: Vec<LocalIdx> = vec![];
for binding in bindings.bindings.into_iter() {
value_indices.push(binding.value_slot);
match binding.key_slot {
KeySlot::None { .. } => {} // nothing to do here
KeySlot::Static { slot, name } => {
let span = self.scope()[slot].span;
self.emit_constant(name.as_str().into(), &OrEntireFile(span));
self.scope_mut().mark_initialised(slot);
}
KeySlot::Dynamic { slot, attr } => {
self.compile_attr(slot, &attr);
self.scope_mut().mark_initialised(slot);
}
}
match binding.binding {
// This entry is an inherit (from) expr. The value is placed on
// the stack by selecting an attribute.
Binding::InheritFrom {
namespace,
name,
span,
} => {
// Create a thunk wrapping value (which may be one as well)
// to avoid forcing the from expr too early.
self.thunk(binding.value_slot, &namespace, |c, s| {
c.compile(s, namespace.clone());
c.emit_force(&namespace);
c.emit_constant(name.as_str().into(), &span);
c.push_op(Op::AttrsSelect, &span);
})
}
// Binding is "just" a plain expression that needs to be
// compiled.
Binding::Plain { expr } => self.compile(binding.value_slot, expr),
// Binding is a merged or nested attribute set, and needs to be
// recursively compiled as another binding.
Binding::Set(set) => self.thunk(binding.value_slot, &set, |c, _| {
c.scope_mut().begin_scope();
c.compile_bindings(binding.value_slot, set.kind, &set);
c.scope_mut().end_scope();
}),
}
// Any code after this point will observe the value in the right
// stack slot, so mark it as initialised.
self.scope_mut().mark_initialised(binding.value_slot);
}
// Final pass to emit finaliser instructions if necessary.
for idx in value_indices {
if self.scope()[idx].needs_finaliser {
let stack_idx = self.scope().stack_index(idx);
let span = self.scope()[idx].span;
self.push_op(Op::Finalise, &OrEntireFile(span));
self.push_uvarint(stack_idx.0 as u64)
}
}
}
fn compile_bindings<N>(&mut self, slot: LocalIdx, kind: BindingsKind, node: &N)
where
N: ToSpan + HasEntryProxy,
{
let mut count = 0;
self.scope_mut().begin_scope();
// Vector to track all observed bindings.
let mut bindings = TrackedBindings::new();
let inherit_froms = self.compile_plain_inherits(slot, kind, &mut count, node);
self.declare_namespaced_inherits(kind, inherit_froms, &mut bindings);
self.declare_bindings(kind, &mut count, &mut bindings, node);
// Check if we can bail out on empty bindings
if count == 0 {
// still need an attrset to exist, but it is empty.
if kind.is_attrs() {
self.emit_constant(Value::Attrs(Box::new(NixAttrs::empty())), node);
return;
}
self.emit_warning(node, WarningKind::EmptyLet);
return;
}
// Actually bind values and ensure they are on the stack.
self.bind_values(bindings);
if kind.is_attrs() {
self.push_op(Op::Attrs, node);
self.push_uvarint(count as u64);
}
}
/// Compile a standard `let ...; in ...` expression.
///
/// Unless in a non-standard scope, the encountered values are simply pushed
/// on the stack and their indices noted in the entries vector.
pub(super) fn compile_let_in(&mut self, slot: LocalIdx, node: &ast::LetIn) {
self.compile_bindings(slot, BindingsKind::LetIn, node);
// Deal with the body, then clean up the locals afterwards.
self.compile(slot, node.body().unwrap());
self.cleanup_scope(node);
}
pub(super) fn compile_legacy_let(&mut self, slot: LocalIdx, node: &ast::LegacyLet) {
self.emit_warning(node, WarningKind::DeprecatedLegacyLet);
self.scope_mut().begin_scope();
self.compile_bindings(slot, BindingsKind::RecAttrs, node);
// Remove the temporary scope, but do not emit any additional cleanup
// (OpAttrs consumes all of these locals).
self.scope_mut().end_scope();
self.emit_constant("body".into(), node);
self.push_op(Op::AttrsSelect, node);
}
/// Is the given identifier defined *by the user* in any current scope?
pub(super) fn is_user_defined(&mut self, ident: &str) -> bool {
matches!(
self.scope_mut().resolve_local(ident),
LocalPosition::Known(_) | LocalPosition::Recursive(_)
)
}
/// Resolve and compile access to an identifier in the scope.
fn compile_identifier_access<N: ToSpan + Clone>(
&mut self,
slot: LocalIdx,
ident: &str,
node: &N,
) {
match self.scope_mut().resolve_local(ident) {
LocalPosition::Unknown => {
// Are we possibly dealing with an upvalue?
if let Some(idx) = self.resolve_upvalue(self.contexts.len() - 1, ident) {
self.push_op(Op::GetUpvalue, node);
self.push_uvarint(idx.0 as u64);
return;
}
// Globals are the "upmost upvalues": they behave
// exactly like a `let ... in` prepended to the
// program's text, and the global scope is nothing
// more than the parent scope of the root scope.
if let Some(global) = self.globals.get(ident) {
self.emit_constant(global.clone(), &self.span_for(node));
return;
}
// If there is a non-empty `with`-stack (or a parent context
// with one), emit a runtime dynamic resolution instruction.
//
// Since it is possible for users to e.g. assign a variable to a
// dynamic resolution without actually using it, this operation
// is wrapped in an extra thunk.
if self.has_dynamic_ancestor() {
self.thunk(slot, node, |c, _| {
c.context_mut().captures_with_stack = true;
c.emit_constant(ident.into(), node);
c.push_op(Op::ResolveWith, node);
});
return;
}
// Otherwise, this variable is missing.
self.emit_error(node, ErrorKind::UnknownStaticVariable);
}
LocalPosition::Known(idx) => {
let stack_idx = self.scope().stack_index(idx);
self.push_op(Op::GetLocal, node);
self.push_uvarint(stack_idx.0 as u64);
}
// This identifier is referring to a value from the same scope which
// is not yet defined. This identifier access must be thunked.
LocalPosition::Recursive(idx) => self.thunk(slot, node, move |compiler, _| {
let upvalue_idx =
compiler.add_upvalue(compiler.contexts.len() - 1, UpvalueKind::Local(idx));
compiler.push_op(Op::GetUpvalue, node);
compiler.push_uvarint(upvalue_idx.0 as u64);
}),
};
}
pub(super) fn compile_ident(&mut self, slot: LocalIdx, node: &ast::Ident) {
let ident = node.ident_token().unwrap();
self.compile_identifier_access(slot, ident.text(), node);
}
}
/// Private compiler helpers related to bindings.
impl Compiler<'_, '_> {
fn resolve_upvalue(&mut self, ctx_idx: usize, name: &str) -> Option<UpvalueIdx> {
if ctx_idx == 0 {
// There can not be any upvalue at the outermost context.
return None;
}
// Determine whether the upvalue is a local in the enclosing context.
match self.contexts[ctx_idx - 1].scope.resolve_local(name) {
// recursive upvalues are dealt with the same way as standard known
// ones, as thunks and closures are guaranteed to be placed on the
// stack (i.e. in the right position) *during* their runtime
// construction
LocalPosition::Known(idx) | LocalPosition::Recursive(idx) => {
return Some(self.add_upvalue(ctx_idx, UpvalueKind::Local(idx)))
}
LocalPosition::Unknown => { /* continue below */ }
};
// If the upvalue comes from even further up, we need to recurse to make
// sure that the upvalues are created at each level.
if let Some(idx) = self.resolve_upvalue(ctx_idx - 1, name) {
return Some(self.add_upvalue(ctx_idx, UpvalueKind::Upvalue(idx)));
}
None
}
fn add_upvalue(&mut self, ctx_idx: usize, kind: UpvalueKind) -> UpvalueIdx {
// If there is already an upvalue closing over the specified index,
// retrieve that instead.
for (idx, existing) in self.contexts[ctx_idx].scope.upvalues.iter().enumerate() {
if existing.kind == kind {
return UpvalueIdx(idx);
}
}
self.contexts[ctx_idx].scope.upvalues.push(Upvalue { kind });
let idx = UpvalueIdx(self.contexts[ctx_idx].lambda.upvalue_count);
self.contexts[ctx_idx].lambda.upvalue_count += 1;
idx
}
}