1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
#[cfg(test)]
mod test;
use smallvec::{Array, SmallVec};
use std::convert::{From, Into};
use std::fmt::{self, Debug, Formatter};
use std::iter::FromIterator;
/// A `NibbleVec` backed by a `SmallVec` with 64 inline element slots.
/// This will not allocate until more than 64 elements are added.
pub type Nibblet = NibbleVec<[u8; 64]>;
/// A data-structure for storing a sequence of 4-bit values.
///
/// Values are stored in a `Vec<u8>`, with two values per byte.
///
/// Values at even indices are stored in the most-significant half of their byte,
/// while values at odd indices are stored in the least-significant half.
///
/// Imagine a vector of [MSB][msb-wiki] first bytes, and you'll be right.
///
/// n = [_ _ | _ _ | _ _]
///
/// [msb-wiki]: http://en.wikipedia.org/wiki/Most_significant_bit
#[derive(Clone, Default)]
pub struct NibbleVec<A: Array<Item = u8>> {
length: usize,
data: SmallVec<A>,
}
impl<A: Array<Item = u8>> NibbleVec<A> {
/// Create an empty nibble vector.
pub fn new() -> NibbleVec<A> {
NibbleVec {
length: 0,
data: SmallVec::new(),
}
}
/// Create a nibble vector from a vector of bytes.
///
/// Each byte is split into two 4-bit entries (MSB, LSB).
#[inline]
pub fn from_byte_vec(vec: Vec<u8>) -> NibbleVec<A> {
let length = 2 * vec.len();
NibbleVec {
length,
data: SmallVec::from_iter(vec),
}
}
/// Returns a byte slice of the nibble vector's contents.
#[inline]
pub fn as_bytes(&self) -> &[u8] {
&self.data[..]
}
/// Converts a nibble vector into a byte vector.
///
/// This consumes the nibble vector, so we do not need to copy its contents.
#[inline]
pub fn into_bytes(self) -> Vec<u8> {
self.data.to_vec()
}
/// Get the number of elements stored in the vector.
#[inline]
pub fn len(&self) -> usize {
self.length
}
/// Returns `true` if the nibble vector has a length of 0.
#[inline]
pub fn is_empty(&self) -> bool {
self.data.is_empty()
}
/// Fetch a single entry from the vector.
///
/// Guaranteed to be a value in the interval [0, 15].
///
/// **Panics** if `idx >= self.len()`.
#[inline]
pub fn get(&self, idx: usize) -> u8 {
if idx >= self.length {
panic!(
"NibbleVec index out of bounds: len is {}, index is {}",
self.length, idx
);
}
let vec_idx = idx / 2;
match idx % 2 {
// If the index is even, take the first (most significant) half of the stored byte.
0 => self.data[vec_idx] >> 4,
// If the index is odd, take the second (least significant) half.
_ => self.data[vec_idx] & 0x0F,
}
}
/// Add a single nibble to the vector.
///
/// Only the 4 least-significant bits of the value are used.
#[inline]
pub fn push(&mut self, val: u8) {
if self.length % 2 == 0 {
self.data.push(val << 4);
} else {
let vec_len = self.data.len();
// Zero the second half of the last byte just to be safe.
self.data[vec_len - 1] &= 0xF0;
// Write the new value.
self.data[vec_len - 1] |= val & 0x0F;
}
self.length += 1;
}
/// Split the vector into two parts.
///
/// All elements at or following the given index are returned in a new `NibbleVec`,
/// with exactly `idx` elements remaining in this vector.
///
/// **Panics** if `idx > self.len()`.
pub fn split(&mut self, idx: usize) -> NibbleVec<A> {
// assert! is a few percent slower surprisingly
if idx > self.length {
panic!(
"attempted to split past vector end. len is {}, index is {}",
self.length, idx
);
} else if idx == self.length {
NibbleVec::new()
} else if idx % 2 == 0 {
self.split_even(idx)
} else {
self.split_odd(idx)
}
}
/// Split function for odd *indices*.
#[inline]
fn split_odd(&mut self, idx: usize) -> NibbleVec<A> {
let mut tail = NibbleVec::new();
// Perform an overlap copy, copying the last nibble of the original vector only if
// the length of the new tail is *odd*.
let tail_length = self.length - idx;
let take_last = tail_length % 2 == 1;
self.overlap_copy(
idx / 2,
self.data.len(),
&mut tail.data,
&mut tail.length,
take_last,
);
// Remove the copied bytes, being careful to skip the idx byte.
for _ in (idx / 2 + 1)..self.data.len() {
self.data.pop();
}
// Zero the second half of the index byte so as to maintain the last-nibble invariant.
self.data[idx / 2] &= 0xF0;
// Update the length of the first NibbleVec.
self.length = idx;
tail
}
/// Split function for even *indices*.
#[inline]
fn split_even(&mut self, idx: usize) -> NibbleVec<A> {
// Avoid allocating a temporary vector by copying all the bytes in order, then popping them.
// Possible to prove: l_d - ⌊i / 2⌋ = ⌊(l_v - i + 1) / 2⌋
// where l_d = self.data.len()
// l_v = self.length
let half_idx = idx / 2;
let mut tail = NibbleVec::new();
// Copy the bytes.
for i in half_idx..self.data.len() {
tail.data.push(self.data[i]);
}
// Pop the same bytes.
for _ in half_idx..self.data.len() {
self.data.pop();
}
// Update lengths.
tail.length = self.length - idx;
self.length = idx;
tail
}
/// Copy data between the second half of self.data[start] and
/// self.data[end - 1]. The second half of the last entry is included
/// if include_last is true.
#[inline]
fn overlap_copy(
&self,
start: usize,
end: usize,
vec: &mut SmallVec<A>,
length: &mut usize,
include_last: bool,
) {
// Copy up to the first half of the last byte.
for i in start..(end - 1) {
// The first half is the second half of the old entry.
let first_half = self.data[i] & 0x0f;
// The second half is the first half of the next entry.
let second_half = self.data[i + 1] >> 4;
vec.push((first_half << 4) | second_half);
*length += 2;
}
if include_last {
let last = self.data[end - 1] & 0x0f;
vec.push(last << 4);
*length += 1;
}
}
/// Append another nibble vector whilst consuming this vector.
#[inline]
pub fn join(mut self, other: &NibbleVec<A>) -> NibbleVec<A> {
// If the length is even, we can append directly.
if self.length % 2 == 0 {
self.length += other.length;
self.data.extend_from_slice(&other.data);
return self;
}
// If the other vector is empty, bail out.
if other.is_empty() {
return self;
}
// If the length is odd, we have to perform an overlap copy.
// Copy the first half of the first element, to make the vector an even length.
self.push(other.get(0));
// Copy the rest of the vector using an overlap copy.
let take_last = other.len() % 2 == 0;
other.overlap_copy(
0,
other.data.len(),
&mut self.data,
&mut self.length,
take_last,
);
self
}
}
impl<A: Array<Item = u8>> PartialEq<NibbleVec<A>> for NibbleVec<A> {
#[inline]
fn eq(&self, other: &NibbleVec<A>) -> bool {
self.length == other.length && self.data == other.data
}
}
impl<A: Array<Item = u8>> Eq for NibbleVec<A> {}
/// Compare a `NibbleVec` and a slice of bytes *element-by-element*.
/// Bytes are **not** interpreted as two `NibbleVec` entries.
impl<A: Array<Item = u8>> PartialEq<[u8]> for NibbleVec<A> {
#[inline]
fn eq(&self, other: &[u8]) -> bool {
if other.len() != self.len() {
return false;
}
for (i, x) in other.iter().enumerate() {
if self.get(i) != *x {
return false;
}
}
true
}
}
impl<A: Array<Item = u8>> Debug for NibbleVec<A> {
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
write!(fmt, "NibbleVec [")?;
if !self.is_empty() {
write!(fmt, "{}", self.get(0))?;
}
for i in 1..self.len() {
write!(fmt, ", {}", self.get(i))?;
}
write!(fmt, "]")
}
}
impl<A: Array<Item = u8>> From<Vec<u8>> for NibbleVec<A> {
#[inline]
fn from(v: Vec<u8>) -> NibbleVec<A> {
NibbleVec::from_byte_vec(v)
}
}
impl<'a, A: Array<Item = u8>> From<&'a [u8]> for NibbleVec<A> {
#[inline]
fn from(v: &[u8]) -> NibbleVec<A> {
NibbleVec::from_byte_vec(v.into())
}
}
impl<A: Array<Item = u8>> Into<Vec<u8>> for NibbleVec<A> {
#[inline]
fn into(self) -> Vec<u8> {
self.data.to_vec()
}
}
impl<'a, A: Array<Item = u8>> Into<Vec<u8>> for &'a NibbleVec<A> {
#[inline]
fn into(self) -> Vec<u8> {
self.data.to_vec()
}
}