1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
//! An iterator that skips values equal to a provided value.
//!
//! Iterators over a contiguous slice, returning all values
//! except for those matching the provided skip value.
//!
//! # Complexity
//!
//! Although superficially quite simple, the level of complexity
//! introduced by digit separators can be quite complex, due
//! the number of permutations during parsing.
//!
//! We can consume any combinations of of \[0,3\] items from the following set:
//! - \[l\]eading digit separators, where digit separators occur before digits.
//! - \[i\]nternal digit separators, where digit separators occur between digits.
//! - \[t\]railing digit separators, where digit separators occur after digits.
//!
//! In addition to those combinations, we can also have:
//! - \[c\]onsecutive digit separators, which allows two digit separators to be adjacent.
//!
//! # Shorthand
//!
//! We will use the term consumer to denote a function that consumes digits,
//! splitting an input buffer at an index, where the leading section contains
//! valid input digits, and the trailing section contains invalid characters.
//! Due to the number of combinations for consumers, we use the following
//! shorthand to denote consumers:
//! - `no`, does not use a digit separator.
//! - `l`, consumes leading digit separators.
//! - `i`, consumes internal digit separators.
//! - `t`, consumes trailing digit separators.
//! - `c`, consumes consecutive digit separators.
//!
//! The `next`/`iter` algorithms are therefore named `next_x`, where `x`
//! represents the shorthand name of the consumer, in sorted order.
//! For example, `next_ilt` means that consumer can skip internal,
//! leading, and trailing digit separators, but not consecutive ones.
#![cfg(all(feature = "format", feature = "parse"))]
use crate::digit::char_is_digit_const;
use crate::format::NumberFormat;
use crate::format_flags as flags;
use crate::iterator::BytesIter;
use core::{mem, ptr};
// PEEK
// ----
/// Determine if the digit separator is internal.
///
/// Preconditions: Assumes `slc[index]` is a digit separator.
/// The compiler optimizes this pretty well: it's almost as efficient as
/// optimized assembly without bounds checking.
macro_rules! is_i {
($self:ident) => {
!is_l!($self) && !is_t!($self)
};
}
/// Determine if the digit separator is leading.
///
/// Preconditions: Assumes `slc[index]` is a digit separator.
/// The compiler optimizes this pretty well: it's almost as efficient as
/// optimized assembly without bounds checking.
macro_rules! is_l {
($self:ident) => {{
// Consume any digit separators before the current one.
let mut index = $self.byte.index;
while index > 0
&& $self.byte.slc.get(index - 1).map_or(false, |&x| $self.is_digit_separator(x))
{
index -= 1;
}
// True if there are no items before the digit separator, or character
// before the digit separators is not a digit.
index == 0 || !$self.byte.slc.get(index - 1).map_or(false, |&x| $self.is_digit(x))
}};
}
/// Determine if the digit separator is trailing.
///
/// Preconditions: Assumes `slc[index]` is a digit separator.
/// The compiler optimizes this pretty well: it's almost as efficient as
/// optimized assembly without bounds checking.
macro_rules! is_t {
($self:ident) => {{
// Consume any digit separators after the current one.
let mut index = $self.byte.index;
while index < $self.byte.slc.len()
&& $self.byte.slc.get(index + 1).map_or(false, |&x| $self.is_digit_separator(x))
{
index += 1;
}
index == $self.byte.slc.len()
|| !$self.byte.slc.get(index + 1).map_or(false, |&x| $self.is_digit(x))
}};
}
/// Determine if the digit separator is leading or internal.
///
/// Preconditions: Assumes `slc[index]` is a digit separator.
macro_rules! is_il {
($self:ident) => {
is_l!($self) || !is_t!($self)
};
}
/// Determine if the digit separator is internal or trailing.
///
/// Preconditions: Assumes `slc[index]` is a digit separator.
macro_rules! is_it {
($self:ident) => {
is_t!($self) || !is_l!($self)
};
}
/// Determine if the digit separator is leading or trailing.
///
/// Preconditions: Assumes `slc[index]` is a digit separator.
macro_rules! is_lt {
($self:ident) => {
is_l!($self) || is_t!($self)
};
}
/// Determine if the digit separator is internal, leading, or trailing.
macro_rules! is_ilt {
($self:ident) => {
true
};
}
/// Consumes 1 or more digit separators.
/// Peeks the next token that's not a digit separator.
macro_rules! peek_1 {
($self:ident, $is_skip:ident) => {{
// This will consume consecutive digit separators.
let value = $self.byte.slc.get($self.byte.index)?;
let is_digit_separator = $self.is_digit_separator(*value);
if is_digit_separator && $is_skip!($self) {
// Have a skippable digit separator: keep incrementing until we find
// a non-digit separator character. Don't need any complex checks
// here, since we've already done them above.
let mut index = $self.byte.index + 1;
while index < $self.length()
&& $self.byte.slc.get(index).map_or(false, |&x| $self.is_digit_separator(x))
{
index += 1;
}
$self.byte.index = index;
$self.byte.slc.get($self.byte.index)
} else {
// Have 1 of 2 conditions:
// 1. A non-digit separator character.
// 2. A digit separator that is not valid in the context.
Some(value)
}
}};
}
/// Consumes 1 or more digit separators.
/// Peeks the next token that's not a digit separator.
macro_rules! peek_n {
($self:ident, $is_skip:ident) => {{
// This will consume consecutive digit separators.
let value = $self.byte.slc.get($self.byte.index)?;
let is_digit_separator = $self.is_digit_separator(*value);
if is_digit_separator && $is_skip!($self) {
// Have a skippable digit separator: keep incrementing until we find
// a non-digit separator character. Don't need any complex checks
// here, since we've already done them above.
let mut index = $self.byte.index + 1;
while index < $self.byte.slc.len()
&& $self.byte.slc.get(index).map_or(false, |&x| $self.is_digit_separator(x))
{
index += 1;
}
$self.byte.index = index;
$self.byte.slc.get($self.byte.index)
} else {
// Have 1 of 2 conditions:
// 1. A non-digit separator character.
// 2. A digit separator that is not valid in the context.
Some(value)
}
}};
}
/// Consumes no digit separators and peeks the next value.
macro_rules! peek_noskip {
($self:ident) => {
$self.byte.slc.get($self.byte.index)
};
}
/// Consumes at most 1 leading digit separator and peeks the next value.
macro_rules! peek_l {
($self:ident) => {
peek_1!($self, is_l)
};
}
/// Consumes at most 1 internal digit separator and peeks the next value.
macro_rules! peek_i {
($self:ident) => {
peek_1!($self, is_i)
};
}
/// Consumes at most 1 trailing digit separator and peeks the next value.
macro_rules! peek_t {
($self:ident) => {
peek_1!($self, is_t)
};
}
/// Consumes at most 1 internal/leading digit separator and peeks the next value.
macro_rules! peek_il {
($self:ident) => {
peek_1!($self, is_il)
};
}
/// Consumes at most 1 internal/trailing digit separator and peeks the next value.
macro_rules! peek_it {
($self:ident) => {
peek_1!($self, is_it)
};
}
/// Consumes at most 1 leading/trailing digit separator and peeks the next value.
macro_rules! peek_lt {
($self:ident) => {
peek_1!($self, is_lt)
};
}
/// Consumes at most 1 digit separator and peeks the next value.
macro_rules! peek_ilt {
($self:ident) => {
peek_1!($self, is_ilt)
};
}
/// Consumes 1 or more leading digit separators and peeks the next value.
macro_rules! peek_lc {
($self:ident) => {
peek_n!($self, is_l)
};
}
/// Consumes 1 or more internal digit separators and peeks the next value.
macro_rules! peek_ic {
($self:ident) => {
peek_n!($self, is_i)
};
}
/// Consumes 1 or more trailing digit separators and peeks the next value.
macro_rules! peek_tc {
($self:ident) => {
peek_n!($self, is_t)
};
}
/// Consumes 1 or more internal/leading digit separators and peeks the next value.
macro_rules! peek_ilc {
($self:ident) => {
peek_n!($self, is_il)
};
}
/// Consumes 1 or more internal/trailing digit separators and peeks the next value.
macro_rules! peek_itc {
($self:ident) => {
peek_n!($self, is_it)
};
}
/// Consumes 1 or more leading/trailing digit separators and peeks the next value.
macro_rules! peek_ltc {
($self:ident) => {
peek_n!($self, is_lt)
};
}
/// Consumes 1 or more digit separators and peeks the next value.
macro_rules! peek_iltc {
($self:ident) => {{
loop {
let value = $self.byte.slc.get($self.byte.index)?;
if !$self.is_digit_separator(*value) {
return Some(value);
}
$self.byte.index += 1;
}
}};
}
// AS DIGITS
// ---------
/// Trait to simplify creation of a `Bytes` object.
pub trait AsBytes<'a> {
/// Create `Bytes` from object.
fn bytes<const FORMAT: u128>(&'a self) -> Bytes<'a, FORMAT>;
}
impl<'a> AsBytes<'a> for [u8] {
#[inline]
fn bytes<const FORMAT: u128>(&'a self) -> Bytes<'a, FORMAT> {
Bytes::new(self)
}
}
// DIGITS
// ------
/// Slice iterator that skips characters matching a given value.
///
/// This wraps an iterator over a contiguous block of memory,
/// and only returns values that are not equal to skip.
///
/// The format allows us to dictate the actual behavior of
/// the iterator: in what contexts does it skip digit separators.
///
/// `FORMAT` is required to tell us what the digit separator is, and where
/// the digit separators are allowed, as well tell us the radix.
/// The radix is required to allow us to differentiate digit from
/// non-digit characters (see [DigitSeparators](/docs/DigitSeparators.md)
/// for a detailed explanation on why).
#[derive(Clone)]
pub struct Bytes<'a, const FORMAT: u128> {
/// The raw slice for the iterator.
slc: &'a [u8],
/// Current index of the iterator in the slice.
index: usize,
/// The current count of values returned by the iterator.
/// This is only used if the iterator is not contiguous.
count: usize,
}
impl<'a, const FORMAT: u128> Bytes<'a, FORMAT> {
/// If each yielded value is adjacent in memory.
pub const IS_CONTIGUOUS: bool = NumberFormat::<{ FORMAT }>::DIGIT_SEPARATOR == 0;
/// Create new byte object.
#[inline]
pub fn new(slc: &'a [u8]) -> Self {
Self {
slc,
index: 0,
count: 0,
}
}
/// Get a ptr to the current start of the iterator.
#[inline]
pub fn as_ptr(&self) -> *const u8 {
self.as_slice().as_ptr()
}
/// Get a slice to the current start of the iterator.
#[inline]
pub fn as_slice(&self) -> &'a [u8] {
// SAFETY: safe since index must be in range
unsafe { self.slc.get_unchecked(self.index..) }
}
/// Get the total number of elements in the underlying slice.
#[inline]
pub fn length(&self) -> usize {
self.slc.len()
}
/// Get the current index of the iterator in the slice.
#[inline]
pub fn cursor(&self) -> usize {
self.index
}
/// Set the current index of the iterator in the slice.
///
/// # Safety
///
/// Safe if `index <= self.length()`.
#[inline]
pub unsafe fn set_cursor(&mut self, index: usize) {
debug_assert!(index <= self.length());
self.index = index
}
/// Get the current number of values returned by the iterator.
#[inline]
pub fn current_count(&self) -> usize {
// If the buffer is contiguous, then we don't need to track the
// number of values: the current index is enough.
if Self::IS_CONTIGUOUS {
self.index
} else {
self.count
}
}
/// Get if the buffer underlying the iterator is empty.
///
/// This might not be the same thing as `is_consumed`: `is_consumed`
/// checks if any more elements may be returned, which may require
/// peeking the next value. Consumed merely checks if the
/// iterator has an empty slice. It is effectively a cheaper,
/// but weaker variant of `is_consumed()`.
#[inline]
pub fn is_done(&self) -> bool {
self.index >= self.slc.len()
}
// Determine if the abstraction is contiguous.
#[inline]
pub fn is_contiguous(&self) -> bool {
Self::IS_CONTIGUOUS
}
/// Read a value of a difference type from the iterator.
/// This advances the internal state of the iterator.
///
/// # Safety
///
/// Safe as long as the number of the buffer is contains as least as
/// many bytes as the size of V.
#[inline]
pub unsafe fn read_unchecked<V>(&self) -> V {
debug_assert!(Self::IS_CONTIGUOUS);
debug_assert!(self.as_slice().len() >= mem::size_of::<V>());
let slc = self.as_slice();
// SAFETY: safe as long as the slice has at least count elements.
unsafe { ptr::read_unaligned::<V>(slc.as_ptr() as *const _) }
}
/// Try to read a value of a different type from the iterator.
/// This advances the internal state of the iterator.
#[inline]
pub fn read<V>(&self) -> Option<V> {
if Self::IS_CONTIGUOUS && self.as_slice().len() >= mem::size_of::<V>() {
// SAFETY: safe since we've guaranteed the buffer is greater than
// the number of elements read.
unsafe { Some(self.read_unchecked()) }
} else {
None
}
}
/// Check if the next element is a given value.
#[inline]
pub fn first_is(&mut self, value: u8) -> bool {
// Don't assert not a digit separator, since this can occur when
// a different component does not allow digit separators there.
if let Some(&c) = self.slc.get(self.index) {
c == value
} else {
false
}
}
/// Check if the next element is a given value without case sensitivity.
#[inline]
pub fn case_insensitive_first_is(&mut self, value: u8) -> bool {
// Don't assert not a digit separator, since this can occur when
// a different component does not allow digit separators there.
if let Some(&c) = self.slc.get(self.index) {
c.to_ascii_lowercase() == value.to_ascii_lowercase()
} else {
false
}
}
/// Get iterator over integer digits.
#[inline]
pub fn integer_iter<'b>(&'b mut self) -> IntegerBytesIterator<'a, 'b, FORMAT> {
IntegerBytesIterator {
byte: self,
}
}
/// Get iterator over fraction digits.
#[inline]
pub fn fraction_iter<'b>(&'b mut self) -> FractionBytesIterator<'a, 'b, FORMAT> {
FractionBytesIterator {
byte: self,
}
}
/// Get iterator over exponent digits.
#[inline]
pub fn exponent_iter<'b>(&'b mut self) -> ExponentBytesIterator<'a, 'b, FORMAT> {
ExponentBytesIterator {
byte: self,
}
}
/// Get iterator over special floating point values.
#[inline]
pub fn special_iter<'b>(&'b mut self) -> SpecialBytesIterator<'a, 'b, FORMAT> {
SpecialBytesIterator {
byte: self,
}
}
/// Advance the byte by `N` elements.
///
/// # Safety
///
/// As long as the iterator is at least `N` elements, this
/// is safe.
#[inline]
pub unsafe fn step_by_unchecked(&mut self, count: usize) {
if Self::IS_CONTIGUOUS {
// Contiguous, can skip most of these checks.
debug_assert!(self.as_slice().len() >= count);
} else {
// Since this isn't contiguous, it only works
// if the value is in the range `[0, 1]`.
// We also need to make sure the **current** value
// isn't a digit separator.
let format = NumberFormat::<{ FORMAT }> {};
debug_assert!(self.as_slice().len() >= count);
debug_assert!(count == 0 || count == 1);
debug_assert!(
count == 0 || self.slc.get(self.index) != Some(&format.digit_separator())
);
}
self.index += count;
if !Self::IS_CONTIGUOUS {
// Only increment the count if it's not contiguous, otherwise,
// this is an unnecessary performance penalty.
self.count += count;
}
}
/// Advance the byte by 1 element.
///
/// # Safety
///
/// Safe as long as the iterator is not empty.
#[inline]
pub unsafe fn step_unchecked(&mut self) {
debug_assert!(!self.as_slice().is_empty());
// SAFETY: safe if `self.index < self.length()`.
unsafe { self.step_by_unchecked(1) };
}
}
// ITERATOR HELPERS
// ----------------
/// Create skip iterator definition.
macro_rules! skip_iterator {
($iterator:ident, $doc:literal) => {
#[doc = $doc]
pub struct $iterator<'a: 'b, 'b, const FORMAT: u128> {
/// The internal byte object for the skip iterator.
byte: &'b mut Bytes<'a, FORMAT>,
}
};
}
macro_rules! is_digit_separator {
($format:ident) => {
/// Determine if the character is a digit separator.
pub const fn is_digit_separator(&self, value: u8) -> bool {
let format = NumberFormat::<{ $format }> {};
let digit_separator = format.digit_separator();
if digit_separator == 0 {
// Check at compile time if we have an invalid digit separator.
// b'\x00', or the NUL character, is this invalid value.
false
} else {
value == digit_separator
}
}
};
}
/// Create impl block for skip iterator.
macro_rules! skip_iterator_impl {
($iterator:ident, $radix_cb:ident) => {
impl<'a: 'b, 'b, const FORMAT: u128> $iterator<'a, 'b, FORMAT> {
is_digit_separator!(FORMAT);
/// Determine if the character is a digit.
pub const fn is_digit(&self, value: u8) -> bool {
let format = NumberFormat::<{ FORMAT }> {};
char_is_digit_const(value, format.$radix_cb())
}
}
};
}
/// Create impl Iterator block for skip iterator.
macro_rules! skip_iterator_iterator_impl {
($iterator:ident) => {
impl<'a: 'b, 'b, const FORMAT: u128> Iterator for $iterator<'a, 'b, FORMAT> {
type Item = &'a u8;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
// Peek will handle everything properly internally.
let value = self.peek()?;
// Increment the index so we know not to re-fetch it.
self.byte.index += 1;
if !Self::IS_CONTIGUOUS {
// Only increment the count if it's not contiguous, otherwise,
// this is an unnecessary performance penalty.
self.byte.count += 1;
}
Some(value)
}
}
};
}
/// Create base methods for the ByteIter block of a skip iterator.
macro_rules! skip_iterator_byteiter_base {
($format:ident, $mask:ident) => {
// It's contiguous if we don't skip over any values.
// IE, the digit separator flags for the iterator over
// the digits doesn't skip any values.
const IS_CONTIGUOUS: bool = $format & flags::$mask == 0;
#[inline]
fn as_ptr(&self) -> *const u8 {
self.byte.as_ptr()
}
#[inline]
fn as_slice(&self) -> &'a [u8] {
self.byte.as_slice()
}
#[inline]
fn length(&self) -> usize {
self.byte.length()
}
#[inline]
fn cursor(&self) -> usize {
self.byte.cursor()
}
#[inline]
unsafe fn set_cursor(&mut self, index: usize) {
debug_assert!(index <= self.length());
// SAFETY: safe if `index <= self.length()`.
unsafe { self.byte.set_cursor(index) };
}
#[inline]
fn current_count(&self) -> usize {
self.byte.current_count()
}
#[inline]
fn is_consumed(&mut self) -> bool {
self.peek().is_none()
}
#[inline]
fn is_done(&self) -> bool {
self.byte.is_done()
}
#[inline]
fn is_contiguous(&self) -> bool {
Self::IS_CONTIGUOUS
}
#[inline]
unsafe fn peek_unchecked(&mut self) -> <Self as Iterator>::Item {
self.peek().unwrap()
}
#[inline]
unsafe fn read_unchecked<V>(&self) -> V {
debug_assert!(self.as_slice().len() >= mem::size_of::<V>());
// SAFETY: safe as long as the slice has at least count elements.
unsafe { self.byte.read_unchecked() }
}
#[inline]
fn read<V>(&self) -> Option<V> {
self.byte.read()
}
#[inline]
unsafe fn step_by_unchecked(&mut self, count: usize) {
debug_assert!(self.as_slice().len() >= count);
// SAFETY: safe as long as `slc.len() >= count`.
unsafe { self.byte.step_by_unchecked(count) }
}
};
}
/// Create impl ByteIter block for skip iterator.
macro_rules! skip_iterator_byteiter_impl {
($iterator:ident, $mask:ident, $i:ident, $l:ident, $t:ident, $c:ident) => {
impl<'a: 'b, 'b, const FORMAT: u128> BytesIter<'a> for $iterator<'a, 'b, FORMAT> {
skip_iterator_byteiter_base!(FORMAT, $mask);
/// Peek the next value of the iterator, without consuming it.
#[inline]
fn peek(&mut self) -> Option<<Self as Iterator>::Item> {
let format = NumberFormat::<{ FORMAT }> {};
const IL: u128 = flags::$i | flags::$l;
const IT: u128 = flags::$i | flags::$t;
const LT: u128 = flags::$l | flags::$t;
const ILT: u128 = flags::$i | flags::$l | flags::$t;
const IC: u128 = flags::$i | flags::$c;
const LC: u128 = flags::$l | flags::$c;
const TC: u128 = flags::$t | flags::$c;
const ILC: u128 = IL | flags::$c;
const ITC: u128 = IT | flags::$c;
const LTC: u128 = LT | flags::$c;
const ILTC: u128 = ILT | flags::$c;
match format.digit_separator_flags() & flags::$mask {
0 => peek_noskip!(self),
flags::$i => peek_i!(self),
flags::$l => peek_l!(self),
flags::$t => peek_t!(self),
IL => peek_il!(self),
IT => peek_it!(self),
LT => peek_lt!(self),
ILT => peek_ilt!(self),
IC => peek_ic!(self),
LC => peek_lc!(self),
TC => peek_tc!(self),
ILC => peek_ilc!(self),
ITC => peek_itc!(self),
LTC => peek_ltc!(self),
ILTC => peek_iltc!(self),
_ => unreachable!(),
}
}
}
};
}
// INTEGER DIGITS ITERATOR
// -----------------------
skip_iterator!(IntegerBytesIterator, "Iterator that skips over digit separators in the integer.");
skip_iterator_impl!(IntegerBytesIterator, mantissa_radix);
skip_iterator_iterator_impl!(IntegerBytesIterator);
skip_iterator_byteiter_impl!(
IntegerBytesIterator,
INTEGER_DIGIT_SEPARATOR_FLAG_MASK,
INTEGER_INTERNAL_DIGIT_SEPARATOR,
INTEGER_LEADING_DIGIT_SEPARATOR,
INTEGER_TRAILING_DIGIT_SEPARATOR,
INTEGER_CONSECUTIVE_DIGIT_SEPARATOR
);
// FRACTION DIGITS ITERATOR
// ------------------------
skip_iterator!(FractionBytesIterator, "Iterator that skips over digit separators in the fraction.");
skip_iterator_impl!(FractionBytesIterator, mantissa_radix);
skip_iterator_iterator_impl!(FractionBytesIterator);
skip_iterator_byteiter_impl!(
FractionBytesIterator,
FRACTION_DIGIT_SEPARATOR_FLAG_MASK,
FRACTION_INTERNAL_DIGIT_SEPARATOR,
FRACTION_LEADING_DIGIT_SEPARATOR,
FRACTION_TRAILING_DIGIT_SEPARATOR,
FRACTION_CONSECUTIVE_DIGIT_SEPARATOR
);
// EXPONENT DIGITS ITERATOR
// ------------------------
skip_iterator!(ExponentBytesIterator, "Iterator that skips over digit separators in the exponent.");
skip_iterator_impl!(ExponentBytesIterator, exponent_radix);
skip_iterator_iterator_impl!(ExponentBytesIterator);
skip_iterator_byteiter_impl!(
ExponentBytesIterator,
EXPONENT_DIGIT_SEPARATOR_FLAG_MASK,
EXPONENT_INTERNAL_DIGIT_SEPARATOR,
EXPONENT_LEADING_DIGIT_SEPARATOR,
EXPONENT_TRAILING_DIGIT_SEPARATOR,
EXPONENT_CONSECUTIVE_DIGIT_SEPARATOR
);
// SPECIAL DIGITS ITERATOR
// -----------------------
skip_iterator!(
SpecialBytesIterator,
"Iterator that skips over digit separators in special floats."
);
skip_iterator_iterator_impl!(SpecialBytesIterator);
impl<'a: 'b, 'b, const FORMAT: u128> SpecialBytesIterator<'a, 'b, FORMAT> {
is_digit_separator!(FORMAT);
}
impl<'a: 'b, 'b, const FORMAT: u128> BytesIter<'a> for SpecialBytesIterator<'a, 'b, FORMAT> {
skip_iterator_byteiter_base!(FORMAT, SPECIAL_DIGIT_SEPARATOR);
/// Peek the next value of the iterator, without consuming it.
#[inline]
fn peek(&mut self) -> Option<<Self as Iterator>::Item> {
let format = NumberFormat::<{ FORMAT }> {};
if format.special_digit_separator() {
peek_iltc!(self)
} else {
peek_noskip!(self)
}
}
}