1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
use std::{
io::Result,
pin::Pin,
task::{ready, Poll},
};
use bytes::{BufMut, BytesMut};
use pin_project_lite::pin_project;
use tokio::io::{AsyncRead, AsyncWrite, ReadBuf};
use crate::worker_protocol::STDERR_READ;
#[derive(Debug)]
struct U64WriteState {
bytes: [u8; 8],
written: usize,
}
impl U64WriteState {
fn remaining(&self) -> &[u8] {
&self.bytes[self.written..]
}
}
/// State machine for [`StderrReadFramedReader`].
///
/// As the reader progresses it linearly cycles through the states.
#[derive(Debug)]
enum StderrReaderState {
/// Represents the state indicating that we are about to request a new frame.
///
/// When poll_read is called, it writes STDERR_READ into the writer and
/// progresses to the [`StderrReaderState::RequestingFrameLen`] state
///
/// The reader always starts in this state and is reached after every frame has
/// been fully read.
RequestingNextFrame { write_state: U64WriteState },
/// At this point the reader writes the desired payload length we want to receive
/// based on read_buf.remaining().
RequestingFrameLen {
// We need to write 8 bytes of the length u64 value,
// this variable stores how many we've written so far.
write_state: U64WriteState,
},
/// At this point the reader just flushes the writer and gets ready to receive
/// the actual payload size that is about to be sent to us by transitioning to
/// the [`StderrReaderState::ReadingSize`] state.
FrameLenRequested,
/// The size is a u64 which is 8 bytes long, while it's likely that we will receive
/// the whole u64 in one read, it's possible that it will arrive in smaller chunks.
/// So in this state we read up to 8 bytes and transition to
/// [`StderrReaderState::ReadingPayload`] when done.
ReadingSize { buf: [u8; 8], filled: usize },
/// This is where we read the actual payload that is sent to us.
/// All of the previous states were just internal bookkeeping where we did not return
/// any data to the conumer, and only returned Poll::Pending.
///
/// Having read the full payload, progresses to the [`StderrReaderState::RequestingNextFrame`]
/// state to read the next frame when/if requested.
ReadingPayload {
/// Represents the remaining number of bytes we expect to read based on the value
/// read in the previous state.
remaining: u64,
/// Represents the remaining of padding we expect to read before switching back
/// to the RequestingNextFrame state.
pad: usize,
/// In an ideal case this reader does not allocate, but in the scenario where
/// we've read the whol payload frame but still have padding remaining, it's not
/// safe to return the payload to the consumer as there is risk that the reader
/// won't be called again, leaving dangling padding. In this case we store the
/// payload in this buffer until we've read the padding, and then return the data
/// from here.
tmp_buf: BytesMut,
},
}
impl StderrReaderState {
fn request_next_frame() -> Self {
Self::RequestingNextFrame {
write_state: U64WriteState {
bytes: STDERR_READ.to_le_bytes(),
written: 0,
},
}
}
fn read_written(len: u64) -> Self {
Self::RequestingFrameLen {
write_state: U64WriteState {
bytes: len.to_le_bytes(),
written: 0,
},
}
}
}
pin_project! {
/// Implements the reader protocol for STDERR_READ in nix protocol version 1.21..1.23.
///
/// See logging.md#stderr_read and [`StderrReaderState`] for details.
///
/// FUTUREWORK: As per the nix protocol, it should be possible to send logging messages
/// concurrently with reads, however this reader currently monopolizes the writer until eof is
/// reached or the writer is dropped. It's important we don't allow certain interleavings of
/// log writes, i.e. it's not ok to issue a log message right after we've requested
/// STDERR_READ, but before requesting the length.
pub struct StderrReadFramedReader<R, W> {
#[pin]
reader: R,
#[pin]
writer: W,
state: StderrReaderState
}
}
impl<R, W> StderrReadFramedReader<R, W> {
pub fn new(reader: R, writer: W) -> Self {
Self {
reader,
writer,
state: StderrReaderState::request_next_frame(),
}
}
}
impl<R: AsyncRead, W: AsyncWrite> AsyncRead for StderrReadFramedReader<R, W> {
fn poll_read(
mut self: Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
read_buf: &mut ReadBuf<'_>,
) -> Poll<Result<()>> {
loop {
let mut this = self.as_mut().project();
match this.state {
StderrReaderState::RequestingNextFrame { write_state } => {
write_state.written +=
ready!(this.writer.poll_write(cx, write_state.remaining()))?;
if write_state.written == 8 {
*this.state = StderrReaderState::read_written(read_buf.remaining() as u64);
}
}
StderrReaderState::RequestingFrameLen { write_state } => {
write_state.written +=
ready!(this.writer.poll_write(cx, write_state.remaining()))?;
if write_state.written == 8 {
*this.state = StderrReaderState::FrameLenRequested;
}
}
StderrReaderState::FrameLenRequested => {
ready!(this.writer.poll_flush(cx))?;
*this.state = StderrReaderState::ReadingSize {
buf: [0u8; 8],
filled: 0,
};
}
StderrReaderState::ReadingSize { buf, filled } => {
if *filled < buf.len() {
let mut size_buf = ReadBuf::new(buf);
size_buf.advance(*filled);
ready!(this.reader.poll_read(cx, &mut size_buf))?;
let bytes_read = size_buf.filled().len() - *filled;
if bytes_read == 0 {
// oef
return Poll::Ready(Ok(()));
}
*filled += bytes_read;
continue;
}
let size = u64::from_le_bytes(*buf);
if size == 0 {
// eof
*this.state = StderrReaderState::request_next_frame();
return Poll::Ready(Ok(()));
}
let pad = (8 - (size % 8) as usize) % 8;
*this.state = StderrReaderState::ReadingPayload {
remaining: size,
pad,
tmp_buf: BytesMut::new(),
};
}
StderrReaderState::ReadingPayload {
remaining,
pad,
tmp_buf,
} => {
// Make sure we never try to read more than usize which is 4 bytes on 32-bit platforms.
let safe_remaining = if *remaining <= (usize::MAX - *pad) as u64 {
*remaining as usize + *pad
} else {
usize::MAX
};
if safe_remaining - *pad > 0 {
// The buffer is no larger than the amount of data that we expect.
// Otherwise we will trim the buffer below and come back here.
if read_buf.remaining() <= safe_remaining {
let filled_before = read_buf.filled().len();
ready!(this.reader.as_mut().poll_read(cx, read_buf))?;
let bytes_read = read_buf.filled().len() - filled_before;
let payload_size = std::cmp::min(bytes_read, safe_remaining - *pad);
// we don't want to include padding bytes in the result, so we remove them from read_buf.
read_buf.set_filled(filled_before + payload_size);
*remaining -= payload_size as u64;
if *remaining > 0 {
// We have more data to read so we just return ok, knowing that the consumer
// will read again.
return Poll::Ready(Ok(()));
}
// If we don't have any remaining data to read, consume any padding we may have just read.
*pad -= bytes_read - payload_size;
if *pad != 0 {
// We haven't read all the padding yet, so we stash it away to return to the caller
// once we've read the remaining padding.
tmp_buf.clear();
tmp_buf.put_slice(&read_buf.filled()[filled_before..payload_size]);
read_buf.set_filled(filled_before);
continue;
}
*this.state = StderrReaderState::request_next_frame();
return Poll::Ready(Ok(()));
}
// Don't read more than remaining + pad bytes, it avoids unnecessary allocations and makes
// internal bookkeeping simpler.
let mut smaller_buf = read_buf.take(safe_remaining);
ready!(self.as_mut().poll_read(cx, &mut smaller_buf))?;
let bytes_read = smaller_buf.filled().len();
// SAFETY: we just read this number of bytes into read_buf's backing slice above.
unsafe { read_buf.assume_init(bytes_read) };
read_buf.advance(bytes_read);
return Poll::Ready(Ok(()));
} else if *pad > 0 {
// if we've read the whole payload but there is still padding remaining,
// we read it into a stack allocated array
let mut pad_arr = [0u8; 7];
let mut pad_buf = ReadBuf::new(&mut pad_arr);
pad_buf.advance(7 - *pad);
ready!(this.reader.poll_read(cx, &mut pad_buf))?;
*pad = pad_buf.remaining();
if *pad != 0 {
continue;
}
}
// now it's finally time to hand out the read data to the caller and reset to the RequestingNextFrame state.
read_buf.put_slice(tmp_buf);
tmp_buf.clear();
*this.state = StderrReaderState::request_next_frame();
return Poll::Ready(Ok(()));
}
}
}
}
}
#[cfg(test)]
mod tests {
use std::time::Duration;
use hex_literal::hex;
use tokio::io::{split, AsyncReadExt, BufReader};
use tokio_test::io::Builder;
use crate::{nix_daemon::framing::StderrReadFramedReader, worker_protocol::STDERR_READ};
#[tokio::test]
async fn test_single_two_byte_read_with_desired_size_ten() {
let mock = Builder::new()
// The reader should first write STDERR_READ and requested number of bytes into the writer
.write(&STDERR_READ.to_le_bytes())
.write(&10u64.to_le_bytes())
.wait(Duration::ZERO)
// The client sent not 10 but 2 bytes
.read(&2u64.to_le_bytes())
// Immediately followed by the bytes and padding
.read("hi".as_bytes())
.read(&hex!("0000 0000 0000"))
.build();
let (r, w) = split(mock);
let mut reader = StderrReadFramedReader::new(r, w);
let mut result = [0u8; 2];
let mut buf_reader = BufReader::with_capacity(10, &mut reader);
let n = buf_reader.read_exact(&mut result).await.unwrap();
assert_eq!(2, n);
assert_eq!("hi".as_bytes(), result);
}
#[tokio::test]
async fn test_single_read_with_padding_delayed() {
let mock = Builder::new()
// The reader should first write STDERR_READ and requested number of bytes into the writer
.write(&STDERR_READ.to_le_bytes())
.write(&10u64.to_le_bytes())
// The client sent 9 bytes not 10.
.read(&9u64.to_le_bytes())
// Immeditaly followed by bytes
.read(&hex!("0202 0104 ffff ffaa 00"))
// Followed by a delayed padding
.wait(Duration::ZERO)
.read(&hex!("0000 0000 0000 00"))
.build();
let (r, w) = split(mock);
let mut reader = StderrReadFramedReader::new(r, w);
let mut result = [0u8; 9];
let mut buf_reader = BufReader::with_capacity(10, &mut reader);
let n = buf_reader.read_exact(&mut result).await.unwrap();
assert_eq!(9, n);
assert_eq!(hex!("0202 0104 ffff ffaa 00"), result);
}
#[tokio::test]
async fn test_multiple_consecutive_reads_with_arbitrary_delays() {
let mock = Builder::new()
// The reader should first write STDERR_READ and requested number of bytes into the writer
.write(&STDERR_READ.to_le_bytes())
.write(&8192u64.to_le_bytes())
.wait(Duration::ZERO)
// The client sends 6 bytes 'hello ' plus padding
.read(&6u64.to_le_bytes())
.wait(Duration::ZERO)
.read("hello ".as_bytes())
.read(&hex!("0000"))
// The reader sends desired length again
.write(&STDERR_READ.to_le_bytes())
.write(&8192u64.to_le_bytes())
// The client sends 11 bytes 'racerunners' with 's' and padding delayed
.wait(Duration::ZERO)
.read(&11u64.to_le_bytes())
.read("racerunner".as_bytes())
.wait(Duration::ZERO)
.read("s".as_bytes())
.read(&hex!("0000 0000"))
.wait(Duration::ZERO)
.read(&hex!("00"))
.write(&STDERR_READ.to_le_bytes())
.write(&8192u64.to_le_bytes())
.wait(Duration::ZERO)
.read(&0u64.to_le_bytes())
.build();
let (r, w) = split(mock);
let mut reader = StderrReadFramedReader::new(r, w);
let mut res = String::new();
let mut buf_reader = BufReader::with_capacity(8192, &mut reader);
let n = buf_reader.read_to_string(&mut res).await.unwrap();
assert_eq!(17, n);
assert_eq!("hello racerunners", &res);
}
#[tokio::test]
async fn test_single_read_where_writing_stderr_and_desired_size_take_more_than_one_write() {
let stderr_bytes = STDERR_READ.to_le_bytes();
let length_bytes = 10u64.to_le_bytes();
let mock = Builder::new()
.write(&stderr_bytes[..4])
.wait(Duration::ZERO)
.write(&stderr_bytes[4..])
.wait(Duration::ZERO)
.write(&length_bytes[..4])
.wait(Duration::ZERO)
.write(&length_bytes[4..])
.wait(Duration::ZERO)
// The client sent not 10 but 2 bytes
.read(&2u64.to_le_bytes())
// Immediately followed by the bytes and padding
.read("hi".as_bytes())
.read(&hex!("0000 0000 0000"))
.build();
let (r, w) = split(mock);
let mut reader = StderrReadFramedReader::new(r, w);
let mut result = [0u8; 2];
let mut buf_reader = BufReader::with_capacity(10, &mut reader);
let n = buf_reader.read_exact(&mut result).await.unwrap();
assert_eq!(2, n);
assert_eq!("hi".as_bytes(), result);
}
#[tokio::test]
async fn hello() {}
}