1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
use regex_automata::{dfa::Automaton, Anchored, Input};
use crate::{
ext_slice::ByteSlice,
unicode::fsm::{
grapheme_break_fwd::GRAPHEME_BREAK_FWD,
grapheme_break_rev::GRAPHEME_BREAK_REV,
regional_indicator_rev::REGIONAL_INDICATOR_REV,
},
utf8,
};
/// An iterator over grapheme clusters in a byte string.
///
/// This iterator is typically constructed by
/// [`ByteSlice::graphemes`](trait.ByteSlice.html#method.graphemes).
///
/// Unicode defines a grapheme cluster as an *approximation* to a single user
/// visible character. A grapheme cluster, or just "grapheme," is made up of
/// one or more codepoints. For end user oriented tasks, one should generally
/// prefer using graphemes instead of [`Chars`](struct.Chars.html), which
/// always yields one codepoint at a time.
///
/// Since graphemes are made up of one or more codepoints, this iterator yields
/// `&str` elements. When invalid UTF-8 is encountered, replacement codepoints
/// are [substituted](index.html#handling-of-invalid-utf-8).
///
/// This iterator can be used in reverse. When reversed, exactly the same
/// set of grapheme clusters are yielded, but in reverse order.
///
/// This iterator only yields *extended* grapheme clusters, in accordance with
/// [UAX #29](https://www.unicode.org/reports/tr29/tr29-33.html#Grapheme_Cluster_Boundaries).
#[derive(Clone, Debug)]
pub struct Graphemes<'a> {
bs: &'a [u8],
}
impl<'a> Graphemes<'a> {
pub(crate) fn new(bs: &'a [u8]) -> Graphemes<'a> {
Graphemes { bs }
}
/// View the underlying data as a subslice of the original data.
///
/// The slice returned has the same lifetime as the original slice, and so
/// the iterator can continue to be used while this exists.
///
/// # Examples
///
/// ```
/// use bstr::ByteSlice;
///
/// let mut it = b"abc".graphemes();
///
/// assert_eq!(b"abc", it.as_bytes());
/// it.next();
/// assert_eq!(b"bc", it.as_bytes());
/// it.next();
/// it.next();
/// assert_eq!(b"", it.as_bytes());
/// ```
#[inline]
pub fn as_bytes(&self) -> &'a [u8] {
self.bs
}
}
impl<'a> Iterator for Graphemes<'a> {
type Item = &'a str;
#[inline]
fn next(&mut self) -> Option<&'a str> {
let (grapheme, size) = decode_grapheme(self.bs);
if size == 0 {
return None;
}
self.bs = &self.bs[size..];
Some(grapheme)
}
}
impl<'a> DoubleEndedIterator for Graphemes<'a> {
#[inline]
fn next_back(&mut self) -> Option<&'a str> {
let (grapheme, size) = decode_last_grapheme(self.bs);
if size == 0 {
return None;
}
self.bs = &self.bs[..self.bs.len() - size];
Some(grapheme)
}
}
/// An iterator over grapheme clusters in a byte string and their byte index
/// positions.
///
/// This iterator is typically constructed by
/// [`ByteSlice::grapheme_indices`](trait.ByteSlice.html#method.grapheme_indices).
///
/// Unicode defines a grapheme cluster as an *approximation* to a single user
/// visible character. A grapheme cluster, or just "grapheme," is made up of
/// one or more codepoints. For end user oriented tasks, one should generally
/// prefer using graphemes instead of [`Chars`](struct.Chars.html), which
/// always yields one codepoint at a time.
///
/// Since graphemes are made up of one or more codepoints, this iterator
/// yields `&str` elements (along with their start and end byte offsets).
/// When invalid UTF-8 is encountered, replacement codepoints are
/// [substituted](index.html#handling-of-invalid-utf-8). Because of this, the
/// indices yielded by this iterator may not correspond to the length of the
/// grapheme cluster yielded with those indices. For example, when this
/// iterator encounters `\xFF` in the byte string, then it will yield a pair
/// of indices ranging over a single byte, but will provide an `&str`
/// equivalent to `"\u{FFFD}"`, which is three bytes in length. However, when
/// given only valid UTF-8, then all indices are in exact correspondence with
/// their paired grapheme cluster.
///
/// This iterator can be used in reverse. When reversed, exactly the same
/// set of grapheme clusters are yielded, but in reverse order.
///
/// This iterator only yields *extended* grapheme clusters, in accordance with
/// [UAX #29](https://www.unicode.org/reports/tr29/tr29-33.html#Grapheme_Cluster_Boundaries).
#[derive(Clone, Debug)]
pub struct GraphemeIndices<'a> {
bs: &'a [u8],
forward_index: usize,
reverse_index: usize,
}
impl<'a> GraphemeIndices<'a> {
pub(crate) fn new(bs: &'a [u8]) -> GraphemeIndices<'a> {
GraphemeIndices { bs, forward_index: 0, reverse_index: bs.len() }
}
/// View the underlying data as a subslice of the original data.
///
/// The slice returned has the same lifetime as the original slice, and so
/// the iterator can continue to be used while this exists.
///
/// # Examples
///
/// ```
/// use bstr::ByteSlice;
///
/// let mut it = b"abc".grapheme_indices();
///
/// assert_eq!(b"abc", it.as_bytes());
/// it.next();
/// assert_eq!(b"bc", it.as_bytes());
/// it.next();
/// it.next();
/// assert_eq!(b"", it.as_bytes());
/// ```
#[inline]
pub fn as_bytes(&self) -> &'a [u8] {
self.bs
}
}
impl<'a> Iterator for GraphemeIndices<'a> {
type Item = (usize, usize, &'a str);
#[inline]
fn next(&mut self) -> Option<(usize, usize, &'a str)> {
let index = self.forward_index;
let (grapheme, size) = decode_grapheme(self.bs);
if size == 0 {
return None;
}
self.bs = &self.bs[size..];
self.forward_index += size;
Some((index, index + size, grapheme))
}
}
impl<'a> DoubleEndedIterator for GraphemeIndices<'a> {
#[inline]
fn next_back(&mut self) -> Option<(usize, usize, &'a str)> {
let (grapheme, size) = decode_last_grapheme(self.bs);
if size == 0 {
return None;
}
self.bs = &self.bs[..self.bs.len() - size];
self.reverse_index -= size;
Some((self.reverse_index, self.reverse_index + size, grapheme))
}
}
/// Decode a grapheme from the given byte string.
///
/// This returns the resulting grapheme (which may be a Unicode replacement
/// codepoint if invalid UTF-8 was found), along with the number of bytes
/// decoded in the byte string. The number of bytes decoded may not be the
/// same as the length of grapheme in the case where invalid UTF-8 is found.
pub fn decode_grapheme(bs: &[u8]) -> (&str, usize) {
if bs.is_empty() {
("", 0)
} else if bs.len() >= 2
&& bs[0].is_ascii()
&& bs[1].is_ascii()
&& !bs[0].is_ascii_whitespace()
{
// FIXME: It is somewhat sad that we have to special case this, but it
// leads to a significant speed up in predominantly ASCII text. The
// issue here is that the DFA has a bit of overhead, and running it for
// every byte in mostly ASCII text results in a bit slowdown. We should
// re-litigate this once regex-automata 0.3 is out, but it might be
// hard to avoid the special case. A DFA is always going to at least
// require some memory access.
// Safe because all ASCII bytes are valid UTF-8.
let grapheme = unsafe { bs[..1].to_str_unchecked() };
(grapheme, 1)
} else if let Some(hm) = {
let input = Input::new(bs).anchored(Anchored::Yes);
GRAPHEME_BREAK_FWD.try_search_fwd(&input).unwrap()
} {
// Safe because a match can only occur for valid UTF-8.
let grapheme = unsafe { bs[..hm.offset()].to_str_unchecked() };
(grapheme, grapheme.len())
} else {
const INVALID: &'static str = "\u{FFFD}";
// No match on non-empty bytes implies we found invalid UTF-8.
let (_, size) = utf8::decode_lossy(bs);
(INVALID, size)
}
}
fn decode_last_grapheme(bs: &[u8]) -> (&str, usize) {
if bs.is_empty() {
("", 0)
} else if let Some(hm) = {
let input = Input::new(bs).anchored(Anchored::Yes);
GRAPHEME_BREAK_REV.try_search_rev(&input).unwrap()
} {
let start = adjust_rev_for_regional_indicator(bs, hm.offset());
// Safe because a match can only occur for valid UTF-8.
let grapheme = unsafe { bs[start..].to_str_unchecked() };
(grapheme, grapheme.len())
} else {
const INVALID: &'static str = "\u{FFFD}";
// No match on non-empty bytes implies we found invalid UTF-8.
let (_, size) = utf8::decode_last_lossy(bs);
(INVALID, size)
}
}
/// Return the correct offset for the next grapheme decoded at the end of the
/// given byte string, where `i` is the initial guess. In particular,
/// `&bs[i..]` represents the candidate grapheme.
///
/// `i` is returned by this function in all cases except when `&bs[i..]` is
/// a pair of regional indicator codepoints. In that case, if an odd number of
/// additional regional indicator codepoints precedes `i`, then `i` is
/// adjusted such that it points to only a single regional indicator.
///
/// This "fixing" is necessary to handle the requirement that a break cannot
/// occur between regional indicators where it would cause an odd number of
/// regional indicators to exist before the break from the *start* of the
/// string. A reverse regex cannot detect this case easily without look-around.
fn adjust_rev_for_regional_indicator(mut bs: &[u8], i: usize) -> usize {
// All regional indicators use a 4 byte encoding, and we only care about
// the case where we found a pair of regional indicators.
if bs.len() - i != 8 {
return i;
}
// Count all contiguous occurrences of regional indicators. If there's an
// even number of them, then we can accept the pair we found. Otherwise,
// we can only take one of them.
//
// FIXME: This is quadratic in the worst case, e.g., a string of just
// regional indicator codepoints. A fix probably requires refactoring this
// code a bit such that we don't rescan regional indicators.
let mut count = 0;
while let Some(hm) = {
let input = Input::new(bs).anchored(Anchored::Yes);
REGIONAL_INDICATOR_REV.try_search_rev(&input).unwrap()
} {
bs = &bs[..hm.offset()];
count += 1;
}
if count % 2 == 0 {
i
} else {
i + 4
}
}
#[cfg(all(test, feature = "std"))]
mod tests {
use alloc::{
string::{String, ToString},
vec,
vec::Vec,
};
#[cfg(not(miri))]
use ucd_parse::GraphemeClusterBreakTest;
use crate::tests::LOSSY_TESTS;
use super::*;
#[test]
#[cfg(not(miri))]
fn forward_ucd() {
for (i, test) in ucdtests().into_iter().enumerate() {
let given = test.grapheme_clusters.concat();
let got: Vec<String> = Graphemes::new(given.as_bytes())
.map(|cluster| cluster.to_string())
.collect();
assert_eq!(
test.grapheme_clusters,
got,
"\ngrapheme forward break test {} failed:\n\
given: {:?}\n\
expected: {:?}\n\
got: {:?}\n",
i,
uniescape(&given),
uniescape_vec(&test.grapheme_clusters),
uniescape_vec(&got),
);
}
}
#[test]
#[cfg(not(miri))]
fn reverse_ucd() {
for (i, test) in ucdtests().into_iter().enumerate() {
let given = test.grapheme_clusters.concat();
let mut got: Vec<String> = Graphemes::new(given.as_bytes())
.rev()
.map(|cluster| cluster.to_string())
.collect();
got.reverse();
assert_eq!(
test.grapheme_clusters,
got,
"\n\ngrapheme reverse break test {} failed:\n\
given: {:?}\n\
expected: {:?}\n\
got: {:?}\n",
i,
uniescape(&given),
uniescape_vec(&test.grapheme_clusters),
uniescape_vec(&got),
);
}
}
#[test]
fn forward_lossy() {
for &(expected, input) in LOSSY_TESTS {
let got = Graphemes::new(input.as_bytes()).collect::<String>();
assert_eq!(expected, got);
}
}
#[test]
fn reverse_lossy() {
for &(expected, input) in LOSSY_TESTS {
let expected: String = expected.chars().rev().collect();
let got =
Graphemes::new(input.as_bytes()).rev().collect::<String>();
assert_eq!(expected, got);
}
}
#[cfg(not(miri))]
fn uniescape(s: &str) -> String {
s.chars().flat_map(|c| c.escape_unicode()).collect::<String>()
}
#[cfg(not(miri))]
fn uniescape_vec(strs: &[String]) -> Vec<String> {
strs.iter().map(|s| uniescape(s)).collect()
}
/// Return all of the UCD for grapheme breaks.
#[cfg(not(miri))]
fn ucdtests() -> Vec<GraphemeClusterBreakTest> {
const TESTDATA: &'static str =
include_str!("data/GraphemeBreakTest.txt");
let mut tests = vec![];
for mut line in TESTDATA.lines() {
line = line.trim();
if line.starts_with("#") || line.contains("surrogate") {
continue;
}
tests.push(line.parse().unwrap());
}
tests
}
}