1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
// Copyright (C) 2020 Alibaba Cloud. All rights reserved.
//
// Copyright 2019 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE-BSD-3-Clause file.
//
// SPDX-License-Identifier: Apache-2.0 AND BSD-3-Clause
//! FUSE/Virtiofs transport drivers to receive requests from/send reply to Fuse/Virtiofs clients.
//!
//! Originally a FUSE server communicates with the FUSE driver through the device `/dev/fuse`,
//! and the communication protocol is called as FUSE protocol. Later the FUSE protocol is extended
//! to support Virtio-fs device. So there are two transport layers supported:
//! - fusedev: communicate with the FUSE driver through `/dev/fuse`
//! - virtiofs: communicate with the virtiofsd on host side by using virtio descriptors.
use std::any::Any;
use std::collections::VecDeque;
use std::io::{self, IoSlice, Read};
use std::marker::PhantomData;
use std::mem::{size_of, MaybeUninit};
use std::ptr::copy_nonoverlapping;
use std::{cmp, fmt};
use lazy_static::lazy_static;
use libc::{sysconf, _SC_PAGESIZE};
use vm_memory::{ByteValued, VolatileSlice};
#[cfg(feature = "async-io")]
use crate::file_buf::FileVolatileBuf;
use crate::file_buf::FileVolatileSlice;
#[cfg(feature = "async-io")]
use crate::file_traits::AsyncFileReadWriteVolatile;
use crate::file_traits::FileReadWriteVolatile;
use crate::BitmapSlice;
mod fs_cache_req_handler;
#[cfg(feature = "fusedev")]
mod fusedev;
#[cfg(feature = "virtiofs")]
mod virtiofs;
pub use self::fs_cache_req_handler::FsCacheReqHandler;
#[cfg(feature = "fusedev")]
pub use self::fusedev::{FuseBuf, FuseChannel, FuseDevWriter, FuseSession};
#[cfg(feature = "virtiofs")]
pub use self::virtiofs::VirtioFsWriter;
/// Transport layer specific error codes.
#[derive(Debug)]
pub enum Error {
/// Virtio queue descriptor chain overflows.
DescriptorChainOverflow,
/// Failed to find memory region for guest physical address.
FindMemoryRegion,
/// Invalid virtio queue descriptor chain.
InvalidChain,
/// Invalid paramater.
InvalidParameter,
/// Generic IO error.
IoError(io::Error),
/// Out of bounds when splitting VolatileSplice.
SplitOutOfBounds(usize),
/// Failed to access volatile memory.
VolatileMemoryError(vm_memory::VolatileMemoryError),
#[cfg(feature = "fusedev")]
/// Session errors
SessionFailure(String),
#[cfg(feature = "virtiofs")]
/// Failed to access guest memory.
GuestMemoryError(vm_memory::GuestMemoryError),
#[cfg(feature = "virtiofs")]
/// Invalid Indirect Virtio descriptors.
ConvertIndirectDescriptor(virtio_queue::Error),
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
use self::Error::*;
match self {
DescriptorChainOverflow => write!(
f,
"the combined length of all the buffers in a `DescriptorChain` would overflow"
),
FindMemoryRegion => write!(f, "no memory region for this address range"),
InvalidChain => write!(f, "invalid descriptor chain"),
InvalidParameter => write!(f, "invalid parameter"),
IoError(e) => write!(f, "descriptor I/O error: {e}"),
SplitOutOfBounds(off) => write!(f, "`DescriptorChain` split is out of bounds: {off}"),
VolatileMemoryError(e) => write!(f, "volatile memory error: {e}"),
#[cfg(feature = "fusedev")]
SessionFailure(e) => write!(f, "fuse session failure: {e}"),
#[cfg(feature = "virtiofs")]
ConvertIndirectDescriptor(e) => write!(f, "invalid indirect descriptor: {e}"),
#[cfg(feature = "virtiofs")]
GuestMemoryError(e) => write!(f, "descriptor guest memory error: {e}"),
}
}
}
impl From<Box<dyn Any + Send>> for Error {
fn from(value: Box<dyn Any + Send>) -> Self {
let err = value.downcast::<Error>().unwrap();
*err
}
}
/// Specialized version of [std::result::Result] for transport layer operations.
pub type Result<T> = std::result::Result<T, Error>;
impl std::error::Error for Error {}
#[derive(Clone)]
struct IoBuffers<'a, S> {
buffers: VecDeque<VolatileSlice<'a, S>>,
bytes_consumed: usize,
}
impl<S: BitmapSlice> Default for IoBuffers<'_, S> {
fn default() -> Self {
IoBuffers {
buffers: VecDeque::new(),
bytes_consumed: 0,
}
}
}
impl<S: BitmapSlice> IoBuffers<'_, S> {
fn available_bytes(&self) -> usize {
// This is guaranteed not to overflow because the total length of the chain
// is checked during all creations of `IoBuffers` (see
// `Reader::new()` and `Writer::new()`).
self.buffers
.iter()
.fold(0usize, |count, buf| count + buf.len())
}
fn bytes_consumed(&self) -> usize {
self.bytes_consumed
}
fn allocate_file_volatile_slice(&self, count: usize) -> Vec<FileVolatileSlice> {
let mut rem = count;
let mut bufs: Vec<FileVolatileSlice> = Vec::with_capacity(self.buffers.len());
for buf in &self.buffers {
if rem == 0 {
break;
}
// If buffer contains more data than `rem`, truncate buffer to `rem`, otherwise
// more data is written out and causes data corruption.
let local_buf = if buf.len() > rem {
// Safe because we just check rem < buf.len()
FileVolatileSlice::from_volatile_slice(&buf.subslice(0, rem).unwrap())
} else {
FileVolatileSlice::from_volatile_slice(buf)
};
bufs.push(local_buf);
// Don't need check_sub() as we just made sure rem >= local_buf.len()
rem -= local_buf.len();
}
bufs
}
#[cfg(feature = "async-io")]
unsafe fn prepare_io_buf(&self, count: usize) -> Vec<FileVolatileBuf> {
let mut rem = count;
let mut bufs = Vec::with_capacity(self.buffers.len());
for buf in &self.buffers {
if rem == 0 {
break;
}
// If buffer contains more data than `rem`, truncate buffer to `rem`, otherwise
// more data is written out and causes data corruption.
let local_buf = if buf.len() > rem {
// Safe because we just check rem < buf.len()
buf.subslice(0, rem).unwrap()
} else {
buf.clone()
};
// Safe because we just change the interface to access underlying buffers.
bufs.push(FileVolatileBuf::from_raw_ptr(
local_buf.as_ptr(),
local_buf.len(),
local_buf.len(),
));
// Don't need check_sub() as we just made sure rem >= local_buf.len()
rem -= local_buf.len() as usize;
}
bufs
}
#[cfg(all(feature = "async-io", feature = "virtiofs"))]
unsafe fn prepare_mut_io_buf(&self, count: usize) -> Vec<FileVolatileBuf> {
let mut rem = count;
let mut bufs = Vec::with_capacity(self.buffers.len());
for buf in &self.buffers {
if rem == 0 {
break;
}
// If buffer contains more data than `rem`, truncate buffer to `rem`, otherwise
// more data is written out and causes data corruption.
let local_buf = if buf.len() > rem {
// Safe because we just check rem < buf.len()
buf.subslice(0, rem).unwrap()
} else {
buf.clone()
};
bufs.push(FileVolatileBuf::from_raw_ptr(
local_buf.as_ptr(),
0,
local_buf.len(),
));
// Don't need check_sub() as we just made sure rem >= local_buf.len()
rem -= local_buf.len() as usize;
}
bufs
}
fn mark_dirty(&self, count: usize) {
let mut rem = count;
for buf in &self.buffers {
if rem == 0 {
break;
}
// If buffer contains more data than `rem`, truncate buffer to `rem`, otherwise
// more data is written out and causes data corruption.
let local_buf = if buf.len() > rem {
// Safe because we just check rem < buf.len()
buf.subslice(0, rem).unwrap()
} else {
buf.clone()
};
local_buf.bitmap().mark_dirty(0, local_buf.len());
// Don't need check_sub() as we just made sure rem >= local_buf.len()
rem -= local_buf.len();
}
}
fn mark_used(&mut self, bytes_consumed: usize) -> io::Result<()> {
// This can happen if a driver tricks a device into reading/writing more data than
// fits in a `usize`.
let total_bytes_consumed =
self.bytes_consumed
.checked_add(bytes_consumed)
.ok_or_else(|| {
io::Error::new(io::ErrorKind::InvalidData, Error::DescriptorChainOverflow)
})?;
let mut rem = bytes_consumed;
while let Some(buf) = self.buffers.pop_front() {
if rem < buf.len() {
// Split the slice and push the remainder back into the buffer list. Safe because we
// know that `rem` is not out of bounds due to the check and we checked the bounds
// on `buf` when we added it to the buffer list.
self.buffers.push_front(buf.offset(rem).unwrap());
break;
}
// No need for checked math because we know that `buf.size() <= rem`.
rem -= buf.len();
}
self.bytes_consumed = total_bytes_consumed;
Ok(())
}
/// Consumes at most `count` bytes from the `DescriptorChain`. Callers must provide a function
/// that takes a `&[FileVolatileSlice]` and returns the total number of bytes consumed. This
/// function guarantees that the combined length of all the slices in the `&[FileVolatileSlice]` is
/// less than or equal to `count`. `mark_dirty` is used for tracing dirty pages.
///
/// # Errors
///
/// If the provided function returns any error then no bytes are consumed from the buffer and
/// the error is returned to the caller.
fn consume<F>(&mut self, mark_dirty: bool, count: usize, f: F) -> io::Result<usize>
where
F: FnOnce(&[FileVolatileSlice]) -> io::Result<usize>,
{
let bufs = self.allocate_file_volatile_slice(count);
if bufs.is_empty() {
Ok(0)
} else {
let bytes_consumed = f(&bufs)?;
if mark_dirty {
self.mark_dirty(bytes_consumed);
}
self.mark_used(bytes_consumed)?;
Ok(bytes_consumed)
}
}
fn consume_for_read<F>(&mut self, count: usize, f: F) -> io::Result<usize>
where
F: FnOnce(&[FileVolatileSlice]) -> io::Result<usize>,
{
self.consume(false, count, f)
}
fn split_at(&mut self, offset: usize) -> Result<Self> {
let mut rem = offset;
let pos = self.buffers.iter().position(|buf| {
if rem < buf.len() {
true
} else {
rem -= buf.len();
false
}
});
if let Some(at) = pos {
let mut other = self.buffers.split_off(at);
if rem > 0 {
// There must be at least one element in `other` because we checked
// its `size` value in the call to `position` above.
let front = other.pop_front().expect("empty VecDeque after split");
self.buffers
.push_back(front.subslice(0, rem).map_err(Error::VolatileMemoryError)?);
other.push_front(front.offset(rem).map_err(Error::VolatileMemoryError)?);
}
Ok(IoBuffers {
buffers: other,
bytes_consumed: 0,
})
} else if rem == 0 {
Ok(IoBuffers {
buffers: VecDeque::new(),
bytes_consumed: 0,
})
} else {
Err(Error::SplitOutOfBounds(offset))
}
}
}
/// Reader to access FUSE requests from the transport layer data buffers.
///
/// Note that virtio spec requires driver to place any device-writable
/// descriptors after any device-readable descriptors (2.6.4.2 in Virtio Spec v1.1).
/// Reader will skip iterating over descriptor chain when first writable
/// descriptor is encountered.
#[derive(Clone)]
pub struct Reader<'a, S = ()> {
buffers: IoBuffers<'a, S>,
}
impl<S: BitmapSlice> Default for Reader<'_, S> {
fn default() -> Self {
Reader {
buffers: IoBuffers::default(),
}
}
}
impl<S: BitmapSlice> Reader<'_, S> {
/// Reads an object from the descriptor chain buffer.
pub fn read_obj<T: ByteValued>(&mut self) -> io::Result<T> {
let mut obj = MaybeUninit::<T>::uninit();
// Safe because `MaybeUninit` guarantees that the pointer is valid for
// `size_of::<T>()` bytes.
let buf = unsafe {
::std::slice::from_raw_parts_mut(obj.as_mut_ptr() as *mut u8, size_of::<T>())
};
self.read_exact(buf)?;
// Safe because any type that implements `ByteValued` can be considered initialized
// even if it is filled with random data.
Ok(unsafe { obj.assume_init() })
}
/// Reads data from the descriptor chain buffer into a file descriptor.
/// Returns the number of bytes read from the descriptor chain buffer.
/// The number of bytes read can be less than `count` if there isn't
/// enough data in the descriptor chain buffer.
pub fn read_to<F: FileReadWriteVolatile>(
&mut self,
mut dst: F,
count: usize,
) -> io::Result<usize> {
self.buffers
.consume_for_read(count, |bufs| dst.write_vectored_volatile(bufs))
}
/// Reads data from the descriptor chain buffer into a File at offset `off`.
/// Returns the number of bytes read from the descriptor chain buffer.
/// The number of bytes read can be less than `count` if there isn't
/// enough data in the descriptor chain buffer.
pub fn read_to_at<F: FileReadWriteVolatile>(
&mut self,
mut dst: F,
count: usize,
off: u64,
) -> io::Result<usize> {
self.buffers
.consume_for_read(count, |bufs| dst.write_vectored_at_volatile(bufs, off))
}
/// Reads exactly size of data from the descriptor chain buffer into a file descriptor.
pub fn read_exact_to<F: FileReadWriteVolatile>(
&mut self,
mut dst: F,
mut count: usize,
) -> io::Result<()> {
while count > 0 {
match self.read_to(&mut dst, count) {
Ok(0) => {
return Err(io::Error::new(
io::ErrorKind::UnexpectedEof,
"failed to fill whole buffer",
))
}
Ok(n) => count -= n,
Err(ref e) if e.kind() == io::ErrorKind::Interrupted => {}
Err(e) => return Err(e),
}
}
Ok(())
}
/// Returns number of bytes available for reading.
///
/// May return an error if the combined lengths of all the buffers in the DescriptorChain
/// would cause an integer overflow.
pub fn available_bytes(&self) -> usize {
self.buffers.available_bytes()
}
/// Returns number of bytes already read from the descriptor chain buffer.
pub fn bytes_read(&self) -> usize {
self.buffers.bytes_consumed()
}
/// Splits this `Reader` into two at the given offset in the `DescriptorChain` buffer.
/// After the split, `self` will be able to read up to `offset` bytes while the returned
/// `Reader` can read up to `available_bytes() - offset` bytes. Returns an error if
/// `offset > self.available_bytes()`.
pub fn split_at(&mut self, offset: usize) -> Result<Self> {
self.buffers
.split_at(offset)
.map(|buffers| Reader { buffers })
}
}
impl<S: BitmapSlice> io::Read for Reader<'_, S> {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
self.buffers.consume_for_read(buf.len(), |bufs| {
let mut rem = buf;
let mut total = 0;
for buf in bufs {
let copy_len = cmp::min(rem.len(), buf.len());
// Safe because we have already verified that `buf` points to valid memory.
unsafe {
copy_nonoverlapping(buf.as_ptr() as *const u8, rem.as_mut_ptr(), copy_len);
}
rem = &mut rem[copy_len..];
total += copy_len;
}
Ok(total)
})
}
}
#[cfg(feature = "async-io")]
mod async_io {
use super::*;
impl<'a, S: BitmapSlice> Reader<'a, S> {
/// Read data from the data buffer into a File at offset `off` in asynchronous mode.
///
/// Return the number of bytes read from the data buffer. The number of bytes read can
/// be less than `count` if there isn't enough data in the buffer.
pub async fn async_read_to_at<F: AsyncFileReadWriteVolatile>(
&mut self,
dst: &F,
count: usize,
off: u64,
) -> io::Result<usize> {
// Safe because `bufs` doesn't out-live `self`.
let bufs = unsafe { self.buffers.prepare_io_buf(count) };
if bufs.is_empty() {
Ok(0)
} else {
let (res, _) = dst.async_write_vectored_at_volatile(bufs, off).await;
match res {
Ok(cnt) => {
self.buffers.mark_used(cnt)?;
Ok(cnt)
}
Err(e) => Err(e),
}
}
}
}
}
/// Writer to send reply message to '/dev/fuse` or virtiofs queue.
pub enum Writer<'a, S: BitmapSlice = ()> {
#[cfg(feature = "fusedev")]
/// Writer for FuseDev transport driver.
FuseDev(FuseDevWriter<'a, S>),
#[cfg(feature = "virtiofs")]
/// Writer for virtiofs transport driver.
VirtioFs(VirtioFsWriter<'a, S>),
/// Writer for Noop transport driver.
Noop(PhantomData<&'a S>),
}
impl<'a, S: BitmapSlice> Writer<'a, S> {
/// Write data to the descriptor chain buffer from a File at offset `off`.
///
/// Return the number of bytes written to the descriptor chain buffer.
pub fn write_from_at<F: FileReadWriteVolatile>(
&mut self,
src: F,
count: usize,
off: u64,
) -> io::Result<usize> {
match self {
#[cfg(feature = "fusedev")]
Writer::FuseDev(w) => w.write_from_at(src, count, off),
#[cfg(feature = "virtiofs")]
Writer::VirtioFs(w) => w.write_from_at(src, count, off),
_ => Err(std::io::Error::from_raw_os_error(libc::EINVAL)),
}
}
/// Split this `Writer` into two at the given offset in the `DescriptorChain` buffer.
///
/// After the split, `self` will be able to write up to `offset` bytes while the returned
/// `Writer` can write up to `available_bytes() - offset` bytes. Return an error if
/// `offset > self.available_bytes()`.
pub fn split_at(&mut self, offset: usize) -> Result<Self> {
match self {
#[cfg(feature = "fusedev")]
Writer::FuseDev(w) => w.split_at(offset).map(|w| w.into()),
#[cfg(feature = "virtiofs")]
Writer::VirtioFs(w) => w.split_at(offset).map(|w| w.into()),
_ => Err(Error::InvalidParameter),
}
}
/// Return number of bytes available for writing.
///
/// May return an error if the combined lengths of all the buffers in the DescriptorChain would
/// cause an overflow.
pub fn available_bytes(&self) -> usize {
match self {
#[cfg(feature = "fusedev")]
Writer::FuseDev(w) => w.available_bytes(),
#[cfg(feature = "virtiofs")]
Writer::VirtioFs(w) => w.available_bytes(),
_ => 0,
}
}
/// Return number of bytes already written to the descriptor chain buffer.
pub fn bytes_written(&self) -> usize {
match self {
#[cfg(feature = "fusedev")]
Writer::FuseDev(w) => w.bytes_written(),
#[cfg(feature = "virtiofs")]
Writer::VirtioFs(w) => w.bytes_written(),
_ => 0,
}
}
/// Commit all internal buffers of self and others
pub fn commit(&mut self, other: Option<&Self>) -> io::Result<usize> {
match self {
#[cfg(feature = "fusedev")]
Writer::FuseDev(w) => w.commit(other),
#[cfg(feature = "virtiofs")]
Writer::VirtioFs(w) => w.commit(other),
_ => Ok(0),
}
}
}
impl<'a, S: BitmapSlice> io::Write for Writer<'a, S> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
match self {
#[cfg(feature = "fusedev")]
Writer::FuseDev(w) => w.write(buf),
#[cfg(feature = "virtiofs")]
Writer::VirtioFs(w) => w.write(buf),
_ => Err(std::io::Error::from_raw_os_error(libc::EINVAL)),
}
}
fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize> {
match self {
#[cfg(feature = "fusedev")]
Writer::FuseDev(w) => w.write_vectored(bufs),
#[cfg(feature = "virtiofs")]
Writer::VirtioFs(w) => w.write_vectored(bufs),
_ => Err(std::io::Error::from_raw_os_error(libc::EINVAL)),
}
}
fn flush(&mut self) -> io::Result<()> {
match self {
#[cfg(feature = "fusedev")]
Writer::FuseDev(w) => w.flush(),
#[cfg(feature = "virtiofs")]
Writer::VirtioFs(w) => w.flush(),
_ => Ok(()),
}
}
}
#[cfg(feature = "async-io")]
impl<'a, S: BitmapSlice> Writer<'a, S> {
/// Write data from a buffer into this writer in asynchronous mode.
pub async fn async_write(&mut self, data: &[u8]) -> io::Result<usize> {
match self {
#[cfg(feature = "fusedev")]
Writer::FuseDev(w) => w.async_write(data).await,
#[cfg(feature = "virtiofs")]
Writer::VirtioFs(w) => w.async_write(data).await,
_ => Err(std::io::Error::from_raw_os_error(libc::EINVAL)),
}
}
/// Write data from two buffers into this writer in asynchronous mode.
pub async fn async_write2(&mut self, data: &[u8], data2: &[u8]) -> io::Result<usize> {
match self {
#[cfg(feature = "fusedev")]
Writer::FuseDev(w) => w.async_write2(data, data2).await,
#[cfg(feature = "virtiofs")]
Writer::VirtioFs(w) => w.async_write2(data, data2).await,
_ => Err(std::io::Error::from_raw_os_error(libc::EINVAL)),
}
}
/// Write data from three buffers into this writer in asynchronous mode.
pub async fn async_write3(
&mut self,
data: &[u8],
data2: &[u8],
data3: &[u8],
) -> io::Result<usize> {
match self {
#[cfg(feature = "fusedev")]
Writer::FuseDev(w) => w.async_write3(data, data2, data3).await,
#[cfg(feature = "virtiofs")]
Writer::VirtioFs(w) => w.async_write3(data, data2, data3).await,
_ => Err(std::io::Error::from_raw_os_error(libc::EINVAL)),
}
}
/// Attempt to write an entire buffer into this writer in asynchronous mode.
pub async fn async_write_all(&mut self, buf: &[u8]) -> io::Result<()> {
match self {
#[cfg(feature = "fusedev")]
Writer::FuseDev(w) => w.async_write_all(buf).await,
#[cfg(feature = "virtiofs")]
Writer::VirtioFs(w) => w.async_write_all(buf).await,
_ => Err(std::io::Error::from_raw_os_error(libc::EINVAL)),
}
}
/// Asynchronously write data to the descriptor chain buffer from a File at offset `off`.
///
/// Return the number of bytes written to the descriptor chain buffer.
pub async fn async_write_from_at<F: AsyncFileReadWriteVolatile>(
&mut self,
src: &F,
count: usize,
off: u64,
) -> io::Result<usize> {
match self {
#[cfg(feature = "fusedev")]
Writer::FuseDev(w) => w.async_write_from_at(src, count, off).await,
#[cfg(feature = "virtiofs")]
Writer::VirtioFs(w) => w.async_write_from_at(src, count, off).await,
_ => Err(std::io::Error::from_raw_os_error(libc::EINVAL)),
}
}
/// Commit all internal buffers of self and others
pub async fn async_commit(&mut self, other: Option<&Writer<'a, S>>) -> io::Result<usize> {
match self {
#[cfg(feature = "fusedev")]
Writer::FuseDev(w) => w.async_commit(other).await,
#[cfg(feature = "virtiofs")]
Writer::VirtioFs(w) => w.async_commit(other).await,
_ => Err(std::io::Error::from_raw_os_error(libc::EINVAL)),
}
}
}
#[cfg(feature = "fusedev")]
impl<'a, S: BitmapSlice> From<FuseDevWriter<'a, S>> for Writer<'a, S> {
fn from(w: FuseDevWriter<'a, S>) -> Self {
Writer::FuseDev(w)
}
}
#[cfg(feature = "virtiofs")]
impl<'a, S: BitmapSlice> From<VirtioFsWriter<'a, S>> for Writer<'a, S> {
fn from(w: VirtioFsWriter<'a, S>) -> Self {
Writer::VirtioFs(w)
}
}
lazy_static! {
static ref PAGESIZE: usize = unsafe { sysconf(_SC_PAGESIZE) as usize };
}
/// Safe wrapper for `sysconf(_SC_PAGESIZE)`.
#[inline(always)]
pub fn pagesize() -> usize {
*PAGESIZE
}
#[cfg(test)]
mod tests {
use crate::transport::IoBuffers;
use std::collections::VecDeque;
use vm_memory::{
bitmap::{AtomicBitmap, Bitmap},
VolatileSlice,
};
#[test]
fn test_io_buffers() {
let mut buf1 = vec![0x0u8; 16];
let mut buf2 = vec![0x0u8; 16];
let mut bufs = VecDeque::new();
unsafe {
bufs.push_back(VolatileSlice::new(buf1.as_mut_ptr(), buf1.len()));
bufs.push_back(VolatileSlice::new(buf2.as_mut_ptr(), buf2.len()));
}
let mut buffers = IoBuffers {
buffers: bufs,
bytes_consumed: 0,
};
assert_eq!(buffers.available_bytes(), 32);
assert_eq!(buffers.bytes_consumed(), 0);
assert_eq!(
buffers.consume_for_read(2, |buf| Ok(buf[0].len())).unwrap(),
2
);
assert_eq!(buffers.available_bytes(), 30);
assert_eq!(buffers.bytes_consumed(), 2);
let mut buffers2 = buffers.split_at(10).unwrap();
assert_eq!(buffers.available_bytes(), 10);
assert_eq!(buffers.bytes_consumed(), 2);
assert_eq!(buffers2.available_bytes(), 20);
assert_eq!(buffers2.bytes_consumed(), 0);
assert_eq!(
buffers2
.consume_for_read(10, |buf| Ok(buf[0].len() + buf[1].len()))
.unwrap(),
10
);
assert_eq!(
buffers2
.consume_for_read(20, |buf| Ok(buf[0].len()))
.unwrap(),
10
);
let _buffers3 = buffers2.split_at(0).unwrap();
assert!(buffers2.split_at(1).is_err());
}
#[test]
fn test_mark_dirty() {
let mut buf1 = vec![0x0u8; 16];
let bitmap1 = AtomicBitmap::new(16, 2);
assert_eq!(bitmap1.len(), 8);
for i in 0..8 {
assert_eq!(bitmap1.is_bit_set(i), false);
}
let mut buf2 = vec![0x0u8; 16];
let bitmap2 = AtomicBitmap::new(16, 2);
let mut bufs = VecDeque::new();
unsafe {
bufs.push_back(VolatileSlice::with_bitmap(
buf1.as_mut_ptr(),
buf1.len(),
bitmap1.slice_at(0),
));
bufs.push_back(VolatileSlice::with_bitmap(
buf2.as_mut_ptr(),
buf2.len(),
bitmap2.slice_at(0),
));
}
let mut buffers = IoBuffers {
buffers: bufs,
bytes_consumed: 0,
};
assert_eq!(buffers.available_bytes(), 32);
assert_eq!(buffers.bytes_consumed(), 0);
assert_eq!(
buffers.consume_for_read(8, |buf| Ok(buf[0].len())).unwrap(),
8
);
assert_eq!(buffers.available_bytes(), 24);
assert_eq!(buffers.bytes_consumed(), 8);
for i in 0..8 {
assert_eq!(bitmap1.is_bit_set(i), false);
}
assert_eq!(
buffers
.consume(true, 16, |buf| Ok(buf[0].len() + buf[1].len()))
.unwrap(),
16
);
assert_eq!(buffers.available_bytes(), 8);
assert_eq!(buffers.bytes_consumed(), 24);
for i in 0..8 {
if i >= 4 {
assert_eq!(bitmap1.is_bit_set(i), true);
continue;
} else {
assert_eq!(bitmap1.is_bit_set(i), false);
}
}
for i in 0..8 {
if i < 4 {
assert_eq!(bitmap2.is_bit_set(i), true);
} else {
assert_eq!(bitmap2.is_bit_set(i), false);
}
}
}
}