1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
//! Shared trait and methods for writing floats.

#![doc(hidden)]

#[cfg(not(feature = "compact"))]
use crate::algorithm::write_float as write_float_decimal;
#[cfg(feature = "power-of-two")]
use crate::binary;
/// Select the back-end.
#[cfg(feature = "compact")]
use crate::compact::write_float as write_float_decimal;
#[cfg(feature = "power-of-two")]
use crate::hex;
#[cfg(feature = "radix")]
use crate::radix;

use crate::float::RawFloat;
use crate::options::Options;
#[cfg(feature = "f16")]
use lexical_util::bf16::bf16;
use lexical_util::constants::FormattedSize;
#[cfg(feature = "f16")]
use lexical_util::f16::f16;
use lexical_util::format::NumberFormat;
use lexical_write_integer::write::WriteInteger;

/// Write float trait.
pub trait WriteFloat: RawFloat {
    /// Forward write integer parameters to an unoptimized backend.
    ///
    /// # Safety
    ///
    /// Safe as long as the buffer can hold [`FORMATTED_SIZE`] elements
    /// (or [`FORMATTED_SIZE_DECIMAL`] for decimal). If using custom digit
    /// precision control (such as specifying a minimum number of significant
    /// digits), or disabling scientific notation, then more digits may be
    /// required (up to `1075` for the leading or trailing zeros, `1` for
    /// the sign and `1` for the decimal point). So,
    /// `1077 + min_significant_digits.max(52)`, so ~1200 for a reasonable
    /// threshold.
    ///
    /// # Panics
    ///
    /// Panics if the number format is invalid, or if scientific notation
    /// is used and the exponent base does not equal the mantissa radix
    /// and the format is not a hexadecimal float. It also panics
    /// if `options.nan_string` or `options.inf_string` is None and asked
    /// to serialize a NaN or Inf value.
    ///
    /// [`FORMATTED_SIZE`]: lexical_util::constants::FormattedSize::FORMATTED_SIZE
    /// [`FORMATTED_SIZE_DECIMAL`]: lexical_util::constants::FormattedSize::FORMATTED_SIZE_DECIMAL
    #[inline]
    unsafe fn write_float<const FORMAT: u128>(self, bytes: &mut [u8], options: &Options) -> usize
    where
        Self::Unsigned: FormattedSize + WriteInteger,
    {
        // Validate our format options.
        let format = NumberFormat::<FORMAT> {};
        assert!(format.is_valid());
        // Avoid any false assumptions for 128-bit floats.
        assert!(Self::BITS <= 64);

        #[cfg(feature = "power-of-two")]
        {
            if format.radix() != format.exponent_base() {
                assert!(matches!(
                    (format.radix(), format.exponent_base()),
                    (4, 2) | (8, 2) | (16, 2) | (32, 2) | (16, 4)
                ));
            }
        }

        let (float, count, bytes) = if self < Self::ZERO {
            // SAFETY: safe if `bytes.len() > 1`.
            unsafe { index_unchecked_mut!(bytes[0]) = b'-' };
            (-self, 1, unsafe { &mut index_unchecked_mut!(bytes[1..]) })
        } else if cfg!(feature = "format") && format.required_mantissa_sign() {
            // SAFETY: safe if `bytes.len() > 1`.
            unsafe { index_unchecked_mut!(bytes[0]) = b'+' };
            (self, 1, unsafe { &mut index_unchecked_mut!(bytes[1..]) })
        } else {
            (self, 0, bytes)
        };

        // Handle special values.
        if !self.is_special() {
            #[cfg(all(feature = "power-of-two", not(feature = "radix")))]
            {
                // SAFETY: safe if the buffer can hold the significant digits
                let radix = format.radix();
                let exponent_base = format.exponent_base();
                count
                    + if radix == 10 {
                        unsafe { write_float_decimal::<_, FORMAT>(float, bytes, options) }
                    } else if radix != exponent_base {
                        unsafe { hex::write_float::<_, FORMAT>(float, bytes, options) }
                    } else {
                        unsafe { binary::write_float::<_, FORMAT>(float, bytes, options) }
                    }
            }

            #[cfg(feature = "radix")]
            {
                // SAFETY: safe if the buffer can hold the significant digits
                let radix = format.radix();
                let exponent_base = format.exponent_base();
                count
                    + if radix == 10 {
                        unsafe { write_float_decimal::<_, FORMAT>(float, bytes, options) }
                    } else if radix != exponent_base {
                        unsafe { hex::write_float::<_, FORMAT>(float, bytes, options) }
                    } else if matches!(radix, 2 | 4 | 8 | 16 | 32) {
                        unsafe { binary::write_float::<_, FORMAT>(float, bytes, options) }
                    } else {
                        unsafe { radix::write_float::<_, FORMAT>(float, bytes, options) }
                    }
            }

            #[cfg(not(feature = "power-of-two"))]
            {
                // SAFETY: safe if the buffer can hold the significant digits
                count + unsafe { write_float_decimal::<_, FORMAT>(float, bytes, options) }
            }
        } else if self.is_nan() {
            // SAFETY: safe if the buffer is longer than the NaN string.
            // The NaN string must be <= 50 characters, so safe as long as
            // the options were build using safe methods.
            if let Some(nan_string) = options.nan_string() {
                let length = nan_string.len();
                unsafe {
                    let src = nan_string.as_ptr();
                    let dst = &mut index_unchecked_mut!(bytes[..length]);
                    copy_nonoverlapping_unchecked!(dst, src, length);
                }
                count + length
            } else {
                // PANIC: cannot serialize NaN.
                panic!("NaN explicitly disabled but asked to write NaN as string.");
            }
        } else {
            // is_inf
            // SAFETY: safe if the buffer is longer than the Inf string.
            // The Inf string must be <= 50 characters, so safe as long as
            // the options were build using safe methods.
            if let Some(inf_string) = options.inf_string() {
                let length = inf_string.len();
                unsafe {
                    let src = inf_string.as_ptr();
                    let dst = &mut index_unchecked_mut!(bytes[..length]);
                    copy_nonoverlapping_unchecked!(dst, src, length);
                }
                count + length
            } else {
                // PANIC: cannot serialize inf.
                panic!("Inf explicitly disabled but asked to write Inf as string.");
            }
        }
    }
}

macro_rules! write_float_impl {
    ($($t:ty)*) => ($(
        impl WriteFloat for $t {}
    )*)
}

write_float_impl! { f32 f64 }

#[cfg(feature = "f16")]
macro_rules! write_float_as_f32 {
    ($($t:ty)*) => ($(
        impl WriteFloat for $t {
            #[inline]
            unsafe fn write_float<const FORMAT: u128>(self, bytes: &mut [u8], options: &Options) -> usize
            {
                // SAFETY: safe if `bytes` is large enough to hold the written bytes.
                unsafe { self.as_f32().write_float::<FORMAT>(bytes, options) }
            }
        }
    )*)
}

#[cfg(feature = "f16")]
write_float_as_f32! { bf16 f16 }