use std::{collections::HashSet, fmt};
use crate::{
attr_parsing::{parse_assignment_attribute, second},
with_position::{Position, WithPosition},
};
use proc_macro2::{Ident, Span, TokenStream};
use quote::{format_ident, quote, quote_spanned};
use syn::{parse::Parse, spanned::Spanned, FnArg, ItemFn, ReturnType, Token, Type};
pub(crate) fn expand(attr: Attrs, item_fn: ItemFn, kind: FunctionKind) -> TokenStream {
let Attrs { state_ty } = attr;
let mut state_ty = state_ty.map(second);
let check_extractor_count = check_extractor_count(&item_fn, kind);
let check_path_extractor = check_path_extractor(&item_fn, kind);
let check_output_tuples = check_output_tuples(&item_fn);
let check_output_impls_into_response = if check_output_tuples.is_empty() {
check_output_impls_into_response(&item_fn)
} else {
check_output_tuples
};
let check_inputs_and_future_send = if item_fn.sig.generics.params.is_empty() {
let mut err = None;
if state_ty.is_none() {
let state_types_from_args = state_types_from_args(&item_fn);
#[allow(clippy::comparison_chain)]
if state_types_from_args.len() == 1 {
state_ty = state_types_from_args.into_iter().next();
} else if state_types_from_args.len() > 1 {
err = Some(
syn::Error::new(
Span::call_site(),
format!(
"can't infer state type, please add set it explicitly, as in \
`#[axum_macros::debug_{kind}(state = MyStateType)]`"
),
)
.into_compile_error(),
);
}
}
err.unwrap_or_else(|| {
let state_ty = state_ty.unwrap_or_else(|| syn::parse_quote!(()));
let check_future_send = check_future_send(&item_fn, kind);
if let Some(check_input_order) = check_input_order(&item_fn, kind) {
quote! {
#check_input_order
#check_future_send
}
} else {
let check_inputs_impls_from_request =
check_inputs_impls_from_request(&item_fn, state_ty, kind);
quote! {
#check_inputs_impls_from_request
#check_future_send
}
}
})
} else {
syn::Error::new_spanned(
&item_fn.sig.generics,
format!("`#[axum_macros::debug_{kind}]` doesn't support generic functions"),
)
.into_compile_error()
};
let middleware_takes_next_as_last_arg =
matches!(kind, FunctionKind::Middleware).then(|| next_is_last_input(&item_fn));
quote! {
#item_fn
#check_extractor_count
#check_path_extractor
#check_output_impls_into_response
#check_inputs_and_future_send
#middleware_takes_next_as_last_arg
}
}
#[derive(Clone, Copy)]
pub(crate) enum FunctionKind {
Handler,
Middleware,
}
impl fmt::Display for FunctionKind {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
FunctionKind::Handler => f.write_str("handler"),
FunctionKind::Middleware => f.write_str("middleware"),
}
}
}
impl FunctionKind {
fn name_uppercase_plural(&self) -> &'static str {
match self {
FunctionKind::Handler => "Handlers",
FunctionKind::Middleware => "Middleware",
}
}
}
mod kw {
syn::custom_keyword!(body);
syn::custom_keyword!(state);
}
pub(crate) struct Attrs {
state_ty: Option<(kw::state, Type)>,
}
impl Parse for Attrs {
fn parse(input: syn::parse::ParseStream) -> syn::Result<Self> {
let mut state_ty = None;
while !input.is_empty() {
let lh = input.lookahead1();
if lh.peek(kw::state) {
parse_assignment_attribute(input, &mut state_ty)?;
} else {
return Err(lh.error());
}
let _ = input.parse::<Token![,]>();
}
Ok(Self { state_ty })
}
}
fn check_extractor_count(item_fn: &ItemFn, kind: FunctionKind) -> Option<TokenStream> {
let max_extractors = 16;
let inputs = item_fn
.sig
.inputs
.iter()
.filter(|arg| skip_next_arg(arg, kind))
.count();
if inputs <= max_extractors {
None
} else {
let error_message = format!(
"{} cannot take more than {max_extractors} arguments. \
Use `(a, b): (ExtractorA, ExtractorA)` to further nest extractors",
kind.name_uppercase_plural(),
);
let error = syn::Error::new_spanned(&item_fn.sig.inputs, error_message).to_compile_error();
Some(error)
}
}
fn extractor_idents(
item_fn: &ItemFn,
kind: FunctionKind,
) -> impl Iterator<Item = (usize, &syn::FnArg, &syn::Ident)> {
item_fn
.sig
.inputs
.iter()
.filter(move |arg| skip_next_arg(arg, kind))
.enumerate()
.filter_map(|(idx, fn_arg)| match fn_arg {
FnArg::Receiver(_) => None,
FnArg::Typed(pat_type) => {
if let Type::Path(type_path) = &*pat_type.ty {
type_path
.path
.segments
.last()
.map(|segment| (idx, fn_arg, &segment.ident))
} else {
None
}
}
})
}
fn check_path_extractor(item_fn: &ItemFn, kind: FunctionKind) -> TokenStream {
let path_extractors = extractor_idents(item_fn, kind)
.filter(|(_, _, ident)| *ident == "Path")
.collect::<Vec<_>>();
if path_extractors.len() > 1 {
path_extractors
.into_iter()
.map(|(_, arg, _)| {
syn::Error::new_spanned(
arg,
"Multiple parameters must be extracted with a tuple \
`Path<(_, _)>` or a struct `Path<YourParams>`, not by applying \
multiple `Path<_>` extractors",
)
.to_compile_error()
})
.collect()
} else {
quote! {}
}
}
fn is_self_pat_type(typed: &syn::PatType) -> bool {
let ident = if let syn::Pat::Ident(ident) = &*typed.pat {
&ident.ident
} else {
return false;
};
ident == "self"
}
fn check_inputs_impls_from_request(
item_fn: &ItemFn,
state_ty: Type,
kind: FunctionKind,
) -> TokenStream {
let takes_self = item_fn.sig.inputs.first().map_or(false, |arg| match arg {
FnArg::Receiver(_) => true,
FnArg::Typed(typed) => is_self_pat_type(typed),
});
WithPosition::new(
item_fn
.sig
.inputs
.iter()
.filter(|arg| skip_next_arg(arg, kind)),
)
.enumerate()
.map(|(idx, arg)| {
let must_impl_from_request_parts = match &arg {
Position::First(_) | Position::Middle(_) => true,
Position::Last(_) | Position::Only(_) => false,
};
let arg = arg.into_inner();
let (span, ty) = match arg {
FnArg::Receiver(receiver) => {
if receiver.reference.is_some() {
return syn::Error::new_spanned(
receiver,
"Handlers must only take owned values",
)
.into_compile_error();
}
let span = receiver.span();
(span, syn::parse_quote!(Self))
}
FnArg::Typed(typed) => {
let ty = &typed.ty;
let span = ty.span();
if is_self_pat_type(typed) {
(span, syn::parse_quote!(Self))
} else {
(span, ty.clone())
}
}
};
let consumes_request = request_consuming_type_name(&ty).is_some();
let check_fn = format_ident!(
"__axum_macros_check_{}_{}_from_request_check",
item_fn.sig.ident,
idx,
span = span,
);
let call_check_fn = format_ident!(
"__axum_macros_check_{}_{}_from_request_call_check",
item_fn.sig.ident,
idx,
span = span,
);
let call_check_fn_body = if takes_self {
quote_spanned! {span=>
Self::#check_fn();
}
} else {
quote_spanned! {span=>
#check_fn();
}
};
let check_fn_generics = if must_impl_from_request_parts || consumes_request {
quote! {}
} else {
quote! { <M> }
};
let from_request_bound = if must_impl_from_request_parts {
quote_spanned! {span=>
#ty: ::axum::extract::FromRequestParts<#state_ty> + Send
}
} else if consumes_request {
quote_spanned! {span=>
#ty: ::axum::extract::FromRequest<#state_ty> + Send
}
} else {
quote_spanned! {span=>
#ty: ::axum::extract::FromRequest<#state_ty, M> + Send
}
};
quote_spanned! {span=>
#[allow(warnings)]
#[doc(hidden)]
fn #check_fn #check_fn_generics()
where
#from_request_bound,
{}
#[allow(warnings)]
#[doc(hidden)]
fn #call_check_fn()
{
#call_check_fn_body
}
}
})
.collect::<TokenStream>()
}
fn check_output_tuples(item_fn: &ItemFn) -> TokenStream {
let elems = match &item_fn.sig.output {
ReturnType::Type(_, ty) => match &**ty {
Type::Tuple(tuple) => &tuple.elems,
_ => return quote! {},
},
ReturnType::Default => return quote! {},
};
let handler_ident = &item_fn.sig.ident;
match elems.len() {
0 => quote! {},
n if n > 17 => syn::Error::new_spanned(
&item_fn.sig.output,
"Cannot return tuples with more than 17 elements",
)
.to_compile_error(),
_ => WithPosition::new(elems)
.enumerate()
.map(|(idx, arg)| match arg {
Position::First(ty) => match extract_clean_typename(ty).as_deref() {
Some("StatusCode" | "Response") => quote! {},
Some("Parts") => check_is_response_parts(ty, handler_ident, idx),
Some(_) | None => {
if let Some(tn) = well_known_last_response_type(ty) {
syn::Error::new_spanned(
ty,
format!(
"`{tn}` must be the last element \
in a response tuple"
),
)
.to_compile_error()
} else {
check_into_response_parts(ty, handler_ident, idx)
}
}
},
Position::Middle(ty) => {
if let Some(tn) = well_known_last_response_type(ty) {
syn::Error::new_spanned(
ty,
format!("`{tn}` must be the last element in a response tuple"),
)
.to_compile_error()
} else {
check_into_response_parts(ty, handler_ident, idx)
}
}
Position::Last(ty) | Position::Only(ty) => check_into_response(handler_ident, ty),
})
.collect::<TokenStream>(),
}
}
fn check_into_response(handler: &Ident, ty: &Type) -> TokenStream {
let (span, ty) = (ty.span(), ty.clone());
let check_fn = format_ident!(
"__axum_macros_check_{handler}_into_response_check",
span = span,
);
let call_check_fn = format_ident!(
"__axum_macros_check_{handler}_into_response_call_check",
span = span,
);
let call_check_fn_body = quote_spanned! {span=>
#check_fn();
};
let from_request_bound = quote_spanned! {span=>
#ty: ::axum::response::IntoResponse
};
quote_spanned! {span=>
#[allow(warnings)]
#[allow(unreachable_code)]
#[doc(hidden)]
fn #check_fn()
where
#from_request_bound,
{}
#[allow(warnings)]
#[allow(unreachable_code)]
#[doc(hidden)]
fn #call_check_fn() {
#call_check_fn_body
}
}
}
fn check_is_response_parts(ty: &Type, ident: &Ident, index: usize) -> TokenStream {
let (span, ty) = (ty.span(), ty.clone());
let check_fn = format_ident!(
"__axum_macros_check_{}_is_response_parts_{index}_check",
ident,
span = span,
);
quote_spanned! {span=>
#[allow(warnings)]
#[allow(unreachable_code)]
#[doc(hidden)]
fn #check_fn(parts: #ty) -> ::axum::http::response::Parts {
parts
}
}
}
fn check_into_response_parts(ty: &Type, ident: &Ident, index: usize) -> TokenStream {
let (span, ty) = (ty.span(), ty.clone());
let check_fn = format_ident!(
"__axum_macros_check_{}_into_response_parts_{index}_check",
ident,
span = span,
);
let call_check_fn = format_ident!(
"__axum_macros_check_{}_into_response_parts_{index}_call_check",
ident,
span = span,
);
let call_check_fn_body = quote_spanned! {span=>
#check_fn();
};
let from_request_bound = quote_spanned! {span=>
#ty: ::axum::response::IntoResponseParts
};
quote_spanned! {span=>
#[allow(warnings)]
#[allow(unreachable_code)]
#[doc(hidden)]
fn #check_fn()
where
#from_request_bound,
{}
#[allow(warnings)]
#[allow(unreachable_code)]
#[doc(hidden)]
fn #call_check_fn() {
#call_check_fn_body
}
}
}
fn check_input_order(item_fn: &ItemFn, kind: FunctionKind) -> Option<TokenStream> {
let number_of_inputs = item_fn
.sig
.inputs
.iter()
.filter(|arg| skip_next_arg(arg, kind))
.count();
let types_that_consume_the_request = item_fn
.sig
.inputs
.iter()
.filter(|arg| skip_next_arg(arg, kind))
.enumerate()
.filter_map(|(idx, arg)| {
let ty = match arg {
FnArg::Typed(pat_type) => &*pat_type.ty,
FnArg::Receiver(_) => return None,
};
let type_name = request_consuming_type_name(ty)?;
Some((idx, type_name, ty.span()))
})
.collect::<Vec<_>>();
if types_that_consume_the_request.is_empty() {
return None;
};
if types_that_consume_the_request.len() == 1 {
if types_that_consume_the_request[0].0 != number_of_inputs - 1 {
let (_idx, type_name, span) = &types_that_consume_the_request[0];
let error = format!(
"`{type_name}` consumes the request body and thus must be \
the last argument to the handler function"
);
return Some(quote_spanned! {*span=>
compile_error!(#error);
});
} else {
return None;
}
}
if types_that_consume_the_request.len() == 2 {
let (_, first, _) = &types_that_consume_the_request[0];
let (_, second, _) = &types_that_consume_the_request[1];
let error = format!(
"Can't have two extractors that consume the request body. \
`{first}` and `{second}` both do that.",
);
let span = item_fn.sig.inputs.span();
Some(quote_spanned! {span=>
compile_error!(#error);
})
} else {
let types = WithPosition::new(types_that_consume_the_request)
.map(|pos| match pos {
Position::First((_, type_name, _)) | Position::Middle((_, type_name, _)) => {
format!("`{type_name}`, ")
}
Position::Last((_, type_name, _)) => format!("and `{type_name}`"),
Position::Only(_) => unreachable!(),
})
.collect::<String>();
let error = format!(
"Can't have more than one extractor that consume the request body. \
{types} all do that.",
);
let span = item_fn.sig.inputs.span();
Some(quote_spanned! {span=>
compile_error!(#error);
})
}
}
fn extract_clean_typename(ty: &Type) -> Option<String> {
let path = match ty {
Type::Path(type_path) => &type_path.path,
_ => return None,
};
path.segments.last().map(|p| p.ident.to_string())
}
fn request_consuming_type_name(ty: &Type) -> Option<&'static str> {
let typename = extract_clean_typename(ty)?;
let type_name = match &*typename {
"Json" => "Json<_>",
"RawBody" => "RawBody<_>",
"RawForm" => "RawForm",
"Multipart" => "Multipart",
"Protobuf" => "Protobuf",
"JsonLines" => "JsonLines<_>",
"Form" => "Form<_>",
"Request" => "Request<_>",
"Bytes" => "Bytes",
"String" => "String",
"Parts" => "Parts",
_ => return None,
};
Some(type_name)
}
fn well_known_last_response_type(ty: &Type) -> Option<&'static str> {
let typename = match extract_clean_typename(ty) {
Some(tn) => tn,
None => return None,
};
let type_name = match &*typename {
"Json" => "Json<_>",
"Protobuf" => "Protobuf",
"JsonLines" => "JsonLines<_>",
"Form" => "Form<_>",
"Bytes" => "Bytes",
"String" => "String",
_ => return None,
};
Some(type_name)
}
fn check_output_impls_into_response(item_fn: &ItemFn) -> TokenStream {
let ty = match &item_fn.sig.output {
syn::ReturnType::Default => return quote! {},
syn::ReturnType::Type(_, ty) => ty,
};
let span = ty.span();
let declare_inputs = item_fn
.sig
.inputs
.iter()
.filter_map(|arg| match arg {
FnArg::Receiver(_) => None,
FnArg::Typed(pat_ty) => {
let pat = &pat_ty.pat;
let ty = &pat_ty.ty;
Some(quote! {
let #pat: #ty = panic!();
})
}
})
.collect::<TokenStream>();
let block = &item_fn.block;
let make_value_name = format_ident!(
"__axum_macros_check_{}_into_response_make_value",
item_fn.sig.ident
);
let make = if item_fn.sig.asyncness.is_some() {
quote_spanned! {span=>
#[allow(warnings)]
#[allow(unreachable_code)]
#[doc(hidden)]
async fn #make_value_name() -> #ty {
#declare_inputs
#block
}
}
} else {
quote_spanned! {span=>
#[allow(warnings)]
#[allow(unreachable_code)]
#[doc(hidden)]
fn #make_value_name() -> #ty {
#declare_inputs
#block
}
}
};
let name = format_ident!("__axum_macros_check_{}_into_response", item_fn.sig.ident);
if let Some(receiver) = self_receiver(item_fn) {
quote_spanned! {span=>
#make
#[allow(warnings)]
#[allow(unreachable_code)]
#[doc(hidden)]
async fn #name() {
let value = #receiver #make_value_name().await;
fn check<T>(_: T)
where T: ::axum::response::IntoResponse
{}
check(value);
}
}
} else {
quote_spanned! {span=>
#[allow(warnings)]
#[allow(unreachable_code)]
#[doc(hidden)]
async fn #name() {
#make
let value = #make_value_name().await;
fn check<T>(_: T)
where T: ::axum::response::IntoResponse
{}
check(value);
}
}
}
}
fn check_future_send(item_fn: &ItemFn, kind: FunctionKind) -> TokenStream {
if item_fn.sig.asyncness.is_none() {
match &item_fn.sig.output {
syn::ReturnType::Default => {
return syn::Error::new_spanned(
item_fn.sig.fn_token,
format!("{} must be `async fn`s", kind.name_uppercase_plural()),
)
.into_compile_error();
}
syn::ReturnType::Type(_, ty) => ty,
};
}
let span = item_fn.sig.ident.span();
let handler_name = &item_fn.sig.ident;
let args = item_fn.sig.inputs.iter().map(|_| {
quote_spanned! {span=> panic!() }
});
let name = format_ident!("__axum_macros_check_{}_future", item_fn.sig.ident);
let do_check = quote! {
fn check<T>(_: T)
where T: ::std::future::Future + Send
{}
check(future);
};
if let Some(receiver) = self_receiver(item_fn) {
quote! {
#[allow(warnings)]
#[allow(unreachable_code)]
#[doc(hidden)]
fn #name() {
let future = #receiver #handler_name(#(#args),*);
#do_check
}
}
} else {
quote! {
#[allow(warnings)]
#[allow(unreachable_code)]
#[doc(hidden)]
fn #name() {
#item_fn
let future = #handler_name(#(#args),*);
#do_check
}
}
}
}
fn self_receiver(item_fn: &ItemFn) -> Option<TokenStream> {
let takes_self = item_fn.sig.inputs.iter().any(|arg| match arg {
FnArg::Receiver(_) => true,
FnArg::Typed(typed) => is_self_pat_type(typed),
});
if takes_self {
return Some(quote! { Self:: });
}
if let syn::ReturnType::Type(_, ty) = &item_fn.sig.output {
if let syn::Type::Path(path) = &**ty {
let segments = &path.path.segments;
if segments.len() == 1 {
if let Some(last) = segments.last() {
match &last.arguments {
syn::PathArguments::None if last.ident == "Self" => {
return Some(quote! { Self:: });
}
_ => {}
}
}
}
}
}
None
}
fn state_types_from_args(item_fn: &ItemFn) -> HashSet<Type> {
let types = item_fn
.sig
.inputs
.iter()
.filter_map(|input| match input {
FnArg::Receiver(_) => None,
FnArg::Typed(pat_type) => Some(pat_type),
})
.map(|pat_type| &*pat_type.ty);
crate::infer_state_types(types).collect()
}
fn next_is_last_input(item_fn: &ItemFn) -> TokenStream {
let next_args = item_fn
.sig
.inputs
.iter()
.enumerate()
.filter(|(_, arg)| !skip_next_arg(arg, FunctionKind::Middleware))
.collect::<Vec<_>>();
if next_args.is_empty() {
return quote! {
compile_error!(
"Middleware functions must take `axum::middleware::Next` as the last argument",
);
};
}
if next_args.len() == 1 {
let (idx, arg) = &next_args[0];
if *idx != item_fn.sig.inputs.len() - 1 {
return quote_spanned! {arg.span()=>
compile_error!("`axum::middleware::Next` must the last argument");
};
}
}
if next_args.len() >= 2 {
return quote! {
compile_error!(
"Middleware functions can only take one argument of type `axum::middleware::Next`",
);
};
}
quote! {}
}
fn skip_next_arg(arg: &FnArg, kind: FunctionKind) -> bool {
match kind {
FunctionKind::Handler => true,
FunctionKind::Middleware => match arg {
FnArg::Receiver(_) => true,
FnArg::Typed(pat_type) => {
if let Type::Path(type_path) = &*pat_type.ty {
type_path
.path
.segments
.last()
.map_or(true, |path_segment| path_segment.ident != "Next")
} else {
true
}
}
},
}
}
#[test]
fn ui_debug_handler() {
crate::run_ui_tests("debug_handler");
}
#[test]
fn ui_debug_middleware() {
crate::run_ui_tests("debug_middleware");
}