1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
// Copyright 2019 Intel Corporation. All Rights Reserved.
//
// Copyright 2018 The Chromium OS Authors. All rights reserved.
//
// SPDX-License-Identifier: BSD-3-Clause

//! Structure and functions for working with
//! [`timerfd`](http://man7.org/linux/man-pages/man2/timerfd_create.2.html).

use std::fs::File;
use std::mem;
use std::os::unix::io::{AsRawFd, FromRawFd, IntoRawFd, RawFd};
use std::ptr;
use std::time::Duration;

use libc::{self, timerfd_create, timerfd_gettime, timerfd_settime, CLOCK_MONOTONIC, TFD_CLOEXEC};

use crate::errno::{errno_result, Result};

/// A safe wrapper around a Linux
/// [`timerfd`](http://man7.org/linux/man-pages/man2/timerfd_create.2.html).
#[derive(Debug)]
pub struct TimerFd(File);

impl TimerFd {
    /// Create a new [`TimerFd`](struct.TimerFd.html).
    ///
    /// This creates a nonsettable monotonically increasing clock that does not
    /// change after system startup. The timer is initally disarmed and must be
    /// armed by calling [`reset`](fn.reset.html).
    pub fn new() -> Result<TimerFd> {
        // SAFETY: Safe because this doesn't modify any memory and we check the return value.
        let ret = unsafe { timerfd_create(CLOCK_MONOTONIC, TFD_CLOEXEC) };
        if ret < 0 {
            return errno_result();
        }

        // SAFETY: Safe because we uniquely own the file descriptor.
        Ok(TimerFd(unsafe { File::from_raw_fd(ret) }))
    }

    /// Arm the [`TimerFd`](struct.TimerFd.html).
    ///
    /// Set the timer to expire after `dur`.
    ///
    /// # Arguments
    ///
    /// * `dur`: Specify the initial expiration of the timer.
    /// * `interval`: Specify the period for repeated expirations, depending on the
    /// value passed. If `interval` is not `None`, it represents the period after
    /// the initial expiration. Otherwise the timer will expire just once. Cancels
    /// any existing duration and repeating interval.
    ///
    /// # Examples
    ///
    /// ```
    /// extern crate vmm_sys_util;
    /// # use std::time::Duration;
    /// use vmm_sys_util::timerfd::TimerFd;
    ///
    /// let mut timer = TimerFd::new().unwrap();
    /// let dur = Duration::from_millis(100);
    /// let interval = Duration::from_millis(100);
    ///
    /// timer.reset(dur, Some(interval)).unwrap();
    /// ```
    pub fn reset(&mut self, dur: Duration, interval: Option<Duration>) -> Result<()> {
        // SAFETY: Safe because we are zero-initializing a struct with only primitive member fields.
        let mut spec: libc::itimerspec = unsafe { mem::zeroed() };
        // https://github.com/rust-lang/libc/issues/1848
        #[cfg_attr(target_env = "musl", allow(deprecated))]
        {
            spec.it_value.tv_sec = dur.as_secs() as libc::time_t;
        }
        // nsec always fits in i32 because subsec_nanos is defined to be less than one billion.
        let nsec = dur.subsec_nanos() as i32;
        spec.it_value.tv_nsec = libc::c_long::from(nsec);

        if let Some(int) = interval {
            // https://github.com/rust-lang/libc/issues/1848
            #[cfg_attr(target_env = "musl", allow(deprecated))]
            {
                spec.it_interval.tv_sec = int.as_secs() as libc::time_t;
            }
            // nsec always fits in i32 because subsec_nanos is defined to be less than one billion.
            let nsec = int.subsec_nanos() as i32;
            spec.it_interval.tv_nsec = libc::c_long::from(nsec);
        }

        // SAFETY: Safe because this doesn't modify any memory and we check the return value.
        let ret = unsafe { timerfd_settime(self.as_raw_fd(), 0, &spec, ptr::null_mut()) };
        if ret < 0 {
            return errno_result();
        }

        Ok(())
    }

    /// Wait until the timer expires.
    ///
    /// The return value represents the number of times the timer has expired since
    /// the last time `wait` was called. If the timer has not yet expired once,
    /// this call will block until it does.
    ///
    /// # Examples
    ///
    /// ```
    /// extern crate vmm_sys_util;
    /// # use std::time::Duration;
    /// # use std::thread::sleep;
    /// use vmm_sys_util::timerfd::TimerFd;
    ///
    /// let mut timer = TimerFd::new().unwrap();
    /// let dur = Duration::from_millis(100);
    /// let interval = Duration::from_millis(100);
    /// timer.reset(dur, Some(interval)).unwrap();
    ///
    /// sleep(dur * 3);
    /// let count = timer.wait().unwrap();
    /// assert!(count >= 3);
    /// ```
    pub fn wait(&mut self) -> Result<u64> {
        let mut count = 0u64;

        // SAFETY: Safe because this will only modify |buf| and we check the return value.
        let ret = unsafe {
            libc::read(
                self.as_raw_fd(),
                &mut count as *mut _ as *mut libc::c_void,
                mem::size_of_val(&count),
            )
        };
        if ret < 0 {
            return errno_result();
        }

        // The bytes in the buffer are guaranteed to be in native byte-order so we don't need to
        // use from_le or from_be.
        Ok(count)
    }

    /// Tell if the timer is armed.
    ///
    /// Returns `Ok(true)` if the timer is currently armed, otherwise the errno set by
    /// [`timerfd_gettime`](http://man7.org/linux/man-pages/man2/timerfd_create.2.html).
    ///
    /// # Examples
    ///
    /// ```
    /// extern crate vmm_sys_util;
    /// # use std::time::Duration;
    /// use vmm_sys_util::timerfd::TimerFd;
    ///
    /// let mut timer = TimerFd::new().unwrap();
    /// let dur = Duration::from_millis(100);
    ///
    /// timer.reset(dur, None).unwrap();
    /// assert!(timer.is_armed().unwrap());
    /// ```
    pub fn is_armed(&self) -> Result<bool> {
        // SAFETY: Safe because we are zero-initializing a struct with only primitive member fields.
        let mut spec: libc::itimerspec = unsafe { mem::zeroed() };

        // SAFETY: Safe because timerfd_gettime is trusted to only modify `spec`.
        let ret = unsafe { timerfd_gettime(self.as_raw_fd(), &mut spec) };
        if ret < 0 {
            return errno_result();
        }

        Ok(spec.it_value.tv_sec != 0 || spec.it_value.tv_nsec != 0)
    }

    /// Disarm the timer.
    ///
    /// Set zero to disarm the timer, referring to
    /// [`timerfd_settime`](http://man7.org/linux/man-pages/man2/timerfd_create.2.html).
    ///
    /// # Examples
    ///
    /// ```
    /// extern crate vmm_sys_util;
    /// # use std::time::Duration;
    /// use vmm_sys_util::timerfd::TimerFd;
    ///
    /// let mut timer = TimerFd::new().unwrap();
    /// let dur = Duration::from_millis(100);
    ///
    /// timer.reset(dur, None).unwrap();
    /// timer.clear().unwrap();
    /// ```
    pub fn clear(&mut self) -> Result<()> {
        // SAFETY: Safe because we are zero-initializing a struct with only primitive member fields.
        let spec: libc::itimerspec = unsafe { mem::zeroed() };

        // SAFETY: Safe because this doesn't modify any memory and we check the return value.
        let ret = unsafe { timerfd_settime(self.as_raw_fd(), 0, &spec, ptr::null_mut()) };
        if ret < 0 {
            return errno_result();
        }

        Ok(())
    }
}

impl AsRawFd for TimerFd {
    fn as_raw_fd(&self) -> RawFd {
        self.0.as_raw_fd()
    }
}

impl FromRawFd for TimerFd {
    /// This function is unsafe as the primitives currently returned
    /// have the contract that they are the sole owner of the file
    /// descriptor they are wrapping. Usage of this function could
    /// accidentally allow violating this contract which can cause memory
    /// unsafety in code that relies on it being true.
    unsafe fn from_raw_fd(fd: RawFd) -> Self {
        TimerFd(File::from_raw_fd(fd))
    }
}

impl IntoRawFd for TimerFd {
    fn into_raw_fd(self) -> RawFd {
        self.0.into_raw_fd()
    }
}

#[cfg(test)]
mod tests {
    #![allow(clippy::undocumented_unsafe_blocks)]
    use super::*;
    use std::thread::sleep;
    use std::time::{Duration, Instant};

    #[test]
    fn test_from_raw_fd() {
        let ret = unsafe { timerfd_create(CLOCK_MONOTONIC, TFD_CLOEXEC) };
        let tfd = unsafe { TimerFd::from_raw_fd(ret) };
        assert!(!tfd.is_armed().unwrap());
    }

    #[test]
    fn test_into_raw_fd() {
        let tfd = TimerFd::new().expect("failed to create timerfd");
        let fd = tfd.into_raw_fd();
        assert!(fd > 0);
    }
    #[test]
    fn test_one_shot() {
        let mut tfd = TimerFd::new().expect("failed to create timerfd");
        assert!(!tfd.is_armed().unwrap());

        let dur = Duration::from_millis(200);
        let now = Instant::now();
        tfd.reset(dur, None).expect("failed to arm timer");

        assert!(tfd.is_armed().unwrap());

        let count = tfd.wait().expect("unable to wait for timer");

        assert_eq!(count, 1);
        assert!(now.elapsed() >= dur);
        tfd.clear().expect("unable to clear the timer");
        assert!(!tfd.is_armed().unwrap());
    }

    #[test]
    fn test_repeating() {
        let mut tfd = TimerFd::new().expect("failed to create timerfd");

        let dur = Duration::from_millis(200);
        let interval = Duration::from_millis(100);
        tfd.reset(dur, Some(interval)).expect("failed to arm timer");

        sleep(dur * 3);

        let count = tfd.wait().expect("unable to wait for timer");
        assert!(count >= 5, "count = {}", count);
        tfd.clear().expect("unable to clear the timer");
        assert!(!tfd.is_armed().unwrap());
    }
}