1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
// Copyright 2019 Intel Corporation. All Rights Reserved.
//
// Copyright 2018 The Chromium OS Authors. All rights reserved.
//
// SPDX-License-Identifier: BSD-3-Clause
//! Structure and functions for working with
//! [`timerfd`](http://man7.org/linux/man-pages/man2/timerfd_create.2.html).
use std::fs::File;
use std::mem;
use std::os::unix::io::{AsRawFd, FromRawFd, IntoRawFd, RawFd};
use std::ptr;
use std::time::Duration;
use libc::{self, timerfd_create, timerfd_gettime, timerfd_settime, CLOCK_MONOTONIC, TFD_CLOEXEC};
use crate::errno::{errno_result, Result};
/// A safe wrapper around a Linux
/// [`timerfd`](http://man7.org/linux/man-pages/man2/timerfd_create.2.html).
#[derive(Debug)]
pub struct TimerFd(File);
impl TimerFd {
/// Create a new [`TimerFd`](struct.TimerFd.html).
///
/// This creates a nonsettable monotonically increasing clock that does not
/// change after system startup. The timer is initally disarmed and must be
/// armed by calling [`reset`](fn.reset.html).
pub fn new() -> Result<TimerFd> {
// SAFETY: Safe because this doesn't modify any memory and we check the return value.
let ret = unsafe { timerfd_create(CLOCK_MONOTONIC, TFD_CLOEXEC) };
if ret < 0 {
return errno_result();
}
// SAFETY: Safe because we uniquely own the file descriptor.
Ok(TimerFd(unsafe { File::from_raw_fd(ret) }))
}
/// Arm the [`TimerFd`](struct.TimerFd.html).
///
/// Set the timer to expire after `dur`.
///
/// # Arguments
///
/// * `dur`: Specify the initial expiration of the timer.
/// * `interval`: Specify the period for repeated expirations, depending on the
/// value passed. If `interval` is not `None`, it represents the period after
/// the initial expiration. Otherwise the timer will expire just once. Cancels
/// any existing duration and repeating interval.
///
/// # Examples
///
/// ```
/// extern crate vmm_sys_util;
/// # use std::time::Duration;
/// use vmm_sys_util::timerfd::TimerFd;
///
/// let mut timer = TimerFd::new().unwrap();
/// let dur = Duration::from_millis(100);
/// let interval = Duration::from_millis(100);
///
/// timer.reset(dur, Some(interval)).unwrap();
/// ```
pub fn reset(&mut self, dur: Duration, interval: Option<Duration>) -> Result<()> {
// SAFETY: Safe because we are zero-initializing a struct with only primitive member fields.
let mut spec: libc::itimerspec = unsafe { mem::zeroed() };
// https://github.com/rust-lang/libc/issues/1848
#[cfg_attr(target_env = "musl", allow(deprecated))]
{
spec.it_value.tv_sec = dur.as_secs() as libc::time_t;
}
// nsec always fits in i32 because subsec_nanos is defined to be less than one billion.
let nsec = dur.subsec_nanos() as i32;
spec.it_value.tv_nsec = libc::c_long::from(nsec);
if let Some(int) = interval {
// https://github.com/rust-lang/libc/issues/1848
#[cfg_attr(target_env = "musl", allow(deprecated))]
{
spec.it_interval.tv_sec = int.as_secs() as libc::time_t;
}
// nsec always fits in i32 because subsec_nanos is defined to be less than one billion.
let nsec = int.subsec_nanos() as i32;
spec.it_interval.tv_nsec = libc::c_long::from(nsec);
}
// SAFETY: Safe because this doesn't modify any memory and we check the return value.
let ret = unsafe { timerfd_settime(self.as_raw_fd(), 0, &spec, ptr::null_mut()) };
if ret < 0 {
return errno_result();
}
Ok(())
}
/// Wait until the timer expires.
///
/// The return value represents the number of times the timer has expired since
/// the last time `wait` was called. If the timer has not yet expired once,
/// this call will block until it does.
///
/// # Examples
///
/// ```
/// extern crate vmm_sys_util;
/// # use std::time::Duration;
/// # use std::thread::sleep;
/// use vmm_sys_util::timerfd::TimerFd;
///
/// let mut timer = TimerFd::new().unwrap();
/// let dur = Duration::from_millis(100);
/// let interval = Duration::from_millis(100);
/// timer.reset(dur, Some(interval)).unwrap();
///
/// sleep(dur * 3);
/// let count = timer.wait().unwrap();
/// assert!(count >= 3);
/// ```
pub fn wait(&mut self) -> Result<u64> {
let mut count = 0u64;
// SAFETY: Safe because this will only modify |buf| and we check the return value.
let ret = unsafe {
libc::read(
self.as_raw_fd(),
&mut count as *mut _ as *mut libc::c_void,
mem::size_of_val(&count),
)
};
if ret < 0 {
return errno_result();
}
// The bytes in the buffer are guaranteed to be in native byte-order so we don't need to
// use from_le or from_be.
Ok(count)
}
/// Tell if the timer is armed.
///
/// Returns `Ok(true)` if the timer is currently armed, otherwise the errno set by
/// [`timerfd_gettime`](http://man7.org/linux/man-pages/man2/timerfd_create.2.html).
///
/// # Examples
///
/// ```
/// extern crate vmm_sys_util;
/// # use std::time::Duration;
/// use vmm_sys_util::timerfd::TimerFd;
///
/// let mut timer = TimerFd::new().unwrap();
/// let dur = Duration::from_millis(100);
///
/// timer.reset(dur, None).unwrap();
/// assert!(timer.is_armed().unwrap());
/// ```
pub fn is_armed(&self) -> Result<bool> {
// SAFETY: Safe because we are zero-initializing a struct with only primitive member fields.
let mut spec: libc::itimerspec = unsafe { mem::zeroed() };
// SAFETY: Safe because timerfd_gettime is trusted to only modify `spec`.
let ret = unsafe { timerfd_gettime(self.as_raw_fd(), &mut spec) };
if ret < 0 {
return errno_result();
}
Ok(spec.it_value.tv_sec != 0 || spec.it_value.tv_nsec != 0)
}
/// Disarm the timer.
///
/// Set zero to disarm the timer, referring to
/// [`timerfd_settime`](http://man7.org/linux/man-pages/man2/timerfd_create.2.html).
///
/// # Examples
///
/// ```
/// extern crate vmm_sys_util;
/// # use std::time::Duration;
/// use vmm_sys_util::timerfd::TimerFd;
///
/// let mut timer = TimerFd::new().unwrap();
/// let dur = Duration::from_millis(100);
///
/// timer.reset(dur, None).unwrap();
/// timer.clear().unwrap();
/// ```
pub fn clear(&mut self) -> Result<()> {
// SAFETY: Safe because we are zero-initializing a struct with only primitive member fields.
let spec: libc::itimerspec = unsafe { mem::zeroed() };
// SAFETY: Safe because this doesn't modify any memory and we check the return value.
let ret = unsafe { timerfd_settime(self.as_raw_fd(), 0, &spec, ptr::null_mut()) };
if ret < 0 {
return errno_result();
}
Ok(())
}
}
impl AsRawFd for TimerFd {
fn as_raw_fd(&self) -> RawFd {
self.0.as_raw_fd()
}
}
impl FromRawFd for TimerFd {
/// This function is unsafe as the primitives currently returned
/// have the contract that they are the sole owner of the file
/// descriptor they are wrapping. Usage of this function could
/// accidentally allow violating this contract which can cause memory
/// unsafety in code that relies on it being true.
unsafe fn from_raw_fd(fd: RawFd) -> Self {
TimerFd(File::from_raw_fd(fd))
}
}
impl IntoRawFd for TimerFd {
fn into_raw_fd(self) -> RawFd {
self.0.into_raw_fd()
}
}
#[cfg(test)]
mod tests {
#![allow(clippy::undocumented_unsafe_blocks)]
use super::*;
use std::thread::sleep;
use std::time::{Duration, Instant};
#[test]
fn test_from_raw_fd() {
let ret = unsafe { timerfd_create(CLOCK_MONOTONIC, TFD_CLOEXEC) };
let tfd = unsafe { TimerFd::from_raw_fd(ret) };
assert!(!tfd.is_armed().unwrap());
}
#[test]
fn test_into_raw_fd() {
let tfd = TimerFd::new().expect("failed to create timerfd");
let fd = tfd.into_raw_fd();
assert!(fd > 0);
}
#[test]
fn test_one_shot() {
let mut tfd = TimerFd::new().expect("failed to create timerfd");
assert!(!tfd.is_armed().unwrap());
let dur = Duration::from_millis(200);
let now = Instant::now();
tfd.reset(dur, None).expect("failed to arm timer");
assert!(tfd.is_armed().unwrap());
let count = tfd.wait().expect("unable to wait for timer");
assert_eq!(count, 1);
assert!(now.elapsed() >= dur);
tfd.clear().expect("unable to clear the timer");
assert!(!tfd.is_armed().unwrap());
}
#[test]
fn test_repeating() {
let mut tfd = TimerFd::new().expect("failed to create timerfd");
let dur = Duration::from_millis(200);
let interval = Duration::from_millis(100);
tfd.reset(dur, Some(interval)).expect("failed to arm timer");
sleep(dur * 3);
let count = tfd.wait().expect("unable to wait for timer");
assert!(count >= 5, "count = {}", count);
tfd.clear().expect("unable to clear the timer");
assert!(!tfd.is_armed().unwrap());
}
}