pub use digest;
use crate::{Hasher, OutputReader};
use digest::crypto_common;
use digest::generic_array::{typenum::U32, typenum::U64, GenericArray};
impl digest::HashMarker for Hasher {}
impl digest::Update for Hasher {
#[inline]
fn update(&mut self, data: &[u8]) {
self.update(data);
}
}
impl digest::Reset for Hasher {
#[inline]
fn reset(&mut self) {
self.reset(); }
}
impl digest::OutputSizeUser for Hasher {
type OutputSize = U32;
}
impl digest::FixedOutput for Hasher {
#[inline]
fn finalize_into(self, out: &mut GenericArray<u8, Self::OutputSize>) {
out.copy_from_slice(self.finalize().as_bytes());
}
}
impl digest::FixedOutputReset for Hasher {
#[inline]
fn finalize_into_reset(&mut self, out: &mut GenericArray<u8, Self::OutputSize>) {
out.copy_from_slice(self.finalize().as_bytes());
self.reset();
}
}
impl digest::ExtendableOutput for Hasher {
type Reader = OutputReader;
#[inline]
fn finalize_xof(self) -> Self::Reader {
Hasher::finalize_xof(&self)
}
}
impl digest::ExtendableOutputReset for Hasher {
#[inline]
fn finalize_xof_reset(&mut self) -> Self::Reader {
let reader = Hasher::finalize_xof(self);
self.reset();
reader
}
}
impl digest::XofReader for OutputReader {
#[inline]
fn read(&mut self, buffer: &mut [u8]) {
self.fill(buffer);
}
}
impl crypto_common::KeySizeUser for Hasher {
type KeySize = U32;
}
impl crypto_common::BlockSizeUser for Hasher {
type BlockSize = U64;
}
impl digest::MacMarker for Hasher {}
impl digest::KeyInit for Hasher {
#[inline]
fn new(key: &digest::Key<Self>) -> Self {
let key_bytes: [u8; 32] = (*key).into();
Hasher::new_keyed(&key_bytes)
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_digest_traits() {
let mut hasher1 = crate::Hasher::new();
hasher1.update(b"foo");
hasher1.update(b"bar");
hasher1.update(b"baz");
let out1 = hasher1.finalize();
let mut xof1 = [0; 301];
hasher1.finalize_xof().fill(&mut xof1);
assert_eq!(out1.as_bytes(), &xof1[..32]);
let mut hasher2: crate::Hasher = digest::Digest::new();
digest::Digest::update(&mut hasher2, b"xxx");
digest::Digest::reset(&mut hasher2);
digest::Digest::update(&mut hasher2, b"foo");
digest::Digest::update(&mut hasher2, b"bar");
digest::Digest::update(&mut hasher2, b"baz");
let out2 = digest::Digest::finalize(hasher2.clone());
let mut xof2 = [0; 301];
digest::XofReader::read(
&mut digest::ExtendableOutput::finalize_xof(hasher2.clone()),
&mut xof2,
);
assert_eq!(out1.as_bytes(), &out2[..]);
assert_eq!(xof1[..], xof2[..]);
let mut hasher3: crate::Hasher = digest::Digest::new();
digest::Digest::update(&mut hasher3, b"foobarbaz");
let mut out3 = [0; 32];
digest::FixedOutputReset::finalize_into_reset(
&mut hasher3,
GenericArray::from_mut_slice(&mut out3),
);
digest::Digest::update(&mut hasher3, b"foobarbaz");
let mut out4 = [0; 32];
digest::FixedOutputReset::finalize_into_reset(
&mut hasher3,
GenericArray::from_mut_slice(&mut out4),
);
digest::Digest::update(&mut hasher3, b"foobarbaz");
let mut xof3 = [0; 301];
digest::XofReader::read(
&mut digest::ExtendableOutputReset::finalize_xof_reset(&mut hasher3),
&mut xof3,
);
digest::Digest::update(&mut hasher3, b"foobarbaz");
let mut xof4 = [0; 301];
digest::XofReader::read(
&mut digest::ExtendableOutputReset::finalize_xof_reset(&mut hasher3),
&mut xof4,
);
assert_eq!(out1.as_bytes(), &out3[..]);
assert_eq!(out1.as_bytes(), &out4[..]);
assert_eq!(xof1[..], xof3[..]);
assert_eq!(xof1[..], xof4[..]);
}
#[test]
fn test_mac_trait() {
let key = b"some super secret key bytes fooo";
let mut hasher1 = crate::Hasher::new_keyed(key);
hasher1.update(b"foo");
hasher1.update(b"bar");
hasher1.update(b"baz");
let out1 = hasher1.finalize();
let generic_key = (*key).into();
let mut hasher2: crate::Hasher = digest::Mac::new(&generic_key);
digest::Mac::update(&mut hasher2, b"xxx");
digest::Mac::reset(&mut hasher2);
digest::Mac::update(&mut hasher2, b"foo");
digest::Mac::update(&mut hasher2, b"bar");
digest::Mac::update(&mut hasher2, b"baz");
let out2 = digest::Mac::finalize(hasher2);
assert_eq!(out1.as_bytes(), out2.into_bytes().as_slice());
}
fn expected_hmac_blake3(key: &[u8], input: &[u8]) -> [u8; 32] {
let key_hash;
let key_prime = if key.len() <= 64 {
key
} else {
key_hash = *crate::hash(key).as_bytes();
&key_hash
};
let mut ipad = [0x36; 64];
let mut opad = [0x5c; 64];
for i in 0..key_prime.len() {
ipad[i] ^= key_prime[i];
opad[i] ^= key_prime[i];
}
let mut inner_state = crate::Hasher::new();
inner_state.update(&ipad);
inner_state.update(input);
let mut outer_state = crate::Hasher::new();
outer_state.update(&opad);
outer_state.update(inner_state.finalize().as_bytes());
outer_state.finalize().into()
}
#[test]
fn test_hmac_compatibility() {
use hmac::{Mac, SimpleHmac};
let mut x = SimpleHmac::<Hasher>::new_from_slice(b"key").unwrap();
hmac::digest::Update::update(&mut x, b"data");
let output = x.finalize().into_bytes();
assert_ne!(output.len(), 0);
let expected = expected_hmac_blake3(b"key", b"data");
assert_eq!(expected, output.as_ref());
let mut input_bytes = [0; crate::test::TEST_CASES_MAX];
crate::test::paint_test_input(&mut input_bytes);
for &input_len in crate::test::TEST_CASES {
#[cfg(feature = "std")]
dbg!(input_len);
let input = &input_bytes[..input_len];
let mut x = SimpleHmac::<Hasher>::new_from_slice(input).unwrap();
hmac::digest::Update::update(&mut x, input);
let output = x.finalize().into_bytes();
assert_ne!(output.len(), 0);
let expected = expected_hmac_blake3(input, input);
assert_eq!(expected, output.as_ref());
}
}
}