1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
// Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause
//! This module holds abstractions that enable tracking the areas dirtied by writes of a specified
//! length to a given offset. In particular, this is used to track write accesses within a
//! `GuestMemoryRegion` object, and the resulting bitmaps can then be aggregated to build the
//! global view for an entire `GuestMemory` object.
#[cfg(any(test, feature = "backend-bitmap"))]
mod backend;
use std::fmt::Debug;
use crate::{GuestMemory, GuestMemoryRegion};
#[cfg(any(test, feature = "backend-bitmap"))]
pub use backend::{ArcSlice, AtomicBitmap, RefSlice};
/// Trait implemented by types that support creating `BitmapSlice` objects.
pub trait WithBitmapSlice<'a> {
/// Type of the bitmap slice.
type S: BitmapSlice;
}
/// Trait used to represent that a `BitmapSlice` is a `Bitmap` itself, but also satisfies the
/// restriction that slices created from it have the same type as `Self`.
pub trait BitmapSlice: Bitmap + Clone + Debug + for<'a> WithBitmapSlice<'a, S = Self> {}
/// Common bitmap operations. Using Higher-Rank Trait Bounds (HRTBs) to effectively define
/// an associated type that has a lifetime parameter, without tagging the `Bitmap` trait with
/// a lifetime as well.
///
/// Using an associated type allows implementing the `Bitmap` and `BitmapSlice` functionality
/// as a zero-cost abstraction when providing trivial implementations such as the one
/// defined for `()`.
// These methods represent the core functionality that's required by `vm-memory` abstractions
// to implement generic tracking logic, as well as tests that can be reused by different backends.
pub trait Bitmap: for<'a> WithBitmapSlice<'a> {
/// Mark the memory range specified by the given `offset` and `len` as dirtied.
fn mark_dirty(&self, offset: usize, len: usize);
/// Check whether the specified `offset` is marked as dirty.
fn dirty_at(&self, offset: usize) -> bool;
/// Return a `<Self as WithBitmapSlice>::S` slice of the current bitmap, starting at
/// the specified `offset`.
fn slice_at(&self, offset: usize) -> <Self as WithBitmapSlice>::S;
}
/// A no-op `Bitmap` implementation that can be provided for backends that do not actually
/// require the tracking functionality.
impl<'a> WithBitmapSlice<'a> for () {
type S = Self;
}
impl BitmapSlice for () {}
impl Bitmap for () {
fn mark_dirty(&self, _offset: usize, _len: usize) {}
fn dirty_at(&self, _offset: usize) -> bool {
false
}
fn slice_at(&self, _offset: usize) -> Self {}
}
/// A `Bitmap` and `BitmapSlice` implementation for `Option<B>`.
impl<'a, B> WithBitmapSlice<'a> for Option<B>
where
B: WithBitmapSlice<'a>,
{
type S = Option<B::S>;
}
impl<B: BitmapSlice> BitmapSlice for Option<B> {}
impl<B: Bitmap> Bitmap for Option<B> {
fn mark_dirty(&self, offset: usize, len: usize) {
if let Some(inner) = self {
inner.mark_dirty(offset, len)
}
}
fn dirty_at(&self, offset: usize) -> bool {
if let Some(inner) = self {
return inner.dirty_at(offset);
}
false
}
fn slice_at(&self, offset: usize) -> Option<<B as WithBitmapSlice>::S> {
if let Some(inner) = self {
return Some(inner.slice_at(offset));
}
None
}
}
/// Helper type alias for referring to the `BitmapSlice` concrete type associated with
/// an object `B: WithBitmapSlice<'a>`.
pub type BS<'a, B> = <B as WithBitmapSlice<'a>>::S;
/// Helper type alias for referring to the `BitmapSlice` concrete type associated with
/// the memory regions of an object `M: GuestMemory`.
pub type MS<'a, M> = BS<'a, <<M as GuestMemory>::R as GuestMemoryRegion>::B>;
#[cfg(test)]
pub(crate) mod tests {
use super::*;
use std::io::Cursor;
use std::marker::PhantomData;
use std::mem::size_of_val;
use std::result::Result;
use std::sync::atomic::Ordering;
use crate::{Bytes, VolatileMemory};
#[cfg(feature = "backend-mmap")]
use crate::{GuestAddress, MemoryRegionAddress};
// Helper method to check whether a specified range is clean.
pub fn range_is_clean<B: Bitmap>(b: &B, start: usize, len: usize) -> bool {
(start..start + len).all(|offset| !b.dirty_at(offset))
}
// Helper method to check whether a specified range is dirty.
pub fn range_is_dirty<B: Bitmap>(b: &B, start: usize, len: usize) -> bool {
(start..start + len).all(|offset| b.dirty_at(offset))
}
pub fn check_range<B: Bitmap>(b: &B, start: usize, len: usize, clean: bool) -> bool {
if clean {
range_is_clean(b, start, len)
} else {
range_is_dirty(b, start, len)
}
}
// Helper method that tests a generic `B: Bitmap` implementation. It assumes `b` covers
// an area of length at least 0x2000.
pub fn test_bitmap<B: Bitmap>(b: &B) {
let len = 0x2000;
let dirty_offset = 0x1000;
let dirty_len = 0x100;
// Some basic checks.
let s = b.slice_at(dirty_offset);
assert!(range_is_clean(b, 0, len));
assert!(range_is_clean(&s, 0, dirty_len));
b.mark_dirty(dirty_offset, dirty_len);
assert!(range_is_dirty(b, dirty_offset, dirty_len));
assert!(range_is_dirty(&s, 0, dirty_len));
}
#[derive(Debug)]
pub enum TestAccessError {
RangeCleanCheck,
RangeDirtyCheck,
}
// A helper object that implements auxiliary operations for testing `Bytes` implementations
// in the context of dirty bitmap tracking.
struct BytesHelper<F, G, M> {
check_range_fn: F,
address_fn: G,
phantom: PhantomData<*const M>,
}
// `F` represents a closure the checks whether a specified range associated with the `Bytes`
// object that's being tested is marked as dirty or not (depending on the value of the last
// parameter). It has the following parameters:
// - A reference to a `Bytes` implementations that's subject to testing.
// - The offset of the range.
// - The length of the range.
// - Whether we are checking if the range is clean (when `true`) or marked as dirty.
//
// `G` represents a closure that translates an offset into an address value that's
// relevant for the `Bytes` implementation being tested.
impl<F, G, M, A> BytesHelper<F, G, M>
where
F: Fn(&M, usize, usize, bool) -> bool,
G: Fn(usize) -> A,
M: Bytes<A>,
{
fn check_range(&self, m: &M, start: usize, len: usize, clean: bool) -> bool {
(self.check_range_fn)(m, start, len, clean)
}
fn address(&self, offset: usize) -> A {
(self.address_fn)(offset)
}
fn test_access<Op>(
&self,
bytes: &M,
dirty_offset: usize,
dirty_len: usize,
op: Op,
) -> Result<(), TestAccessError>
where
Op: Fn(&M, A),
{
if !self.check_range(bytes, dirty_offset, dirty_len, true) {
return Err(TestAccessError::RangeCleanCheck);
}
op(bytes, self.address(dirty_offset));
if !self.check_range(bytes, dirty_offset, dirty_len, false) {
return Err(TestAccessError::RangeDirtyCheck);
}
Ok(())
}
}
// `F` and `G` stand for the same closure types as described in the `BytesHelper` comment.
// The `step` parameter represents the offset that's added the the current address after
// performing each access. It provides finer grained control when testing tracking
// implementations that aggregate entire ranges for accounting purposes (for example, doing
// tracking at the page level).
pub fn test_bytes<F, G, M, A>(bytes: &M, check_range_fn: F, address_fn: G, step: usize)
where
F: Fn(&M, usize, usize, bool) -> bool,
G: Fn(usize) -> A,
A: Copy,
M: Bytes<A>,
<M as Bytes<A>>::E: Debug,
{
const BUF_SIZE: usize = 1024;
let buf = vec![1u8; 1024];
let val = 1u64;
let h = BytesHelper {
check_range_fn,
address_fn,
phantom: PhantomData,
};
let mut dirty_offset = 0x1000;
// Test `write`.
h.test_access(bytes, dirty_offset, BUF_SIZE, |m, addr| {
assert_eq!(m.write(buf.as_slice(), addr).unwrap(), BUF_SIZE)
})
.unwrap();
dirty_offset += step;
// Test `write_slice`.
h.test_access(bytes, dirty_offset, BUF_SIZE, |m, addr| {
m.write_slice(buf.as_slice(), addr).unwrap()
})
.unwrap();
dirty_offset += step;
// Test `write_obj`.
h.test_access(bytes, dirty_offset, size_of_val(&val), |m, addr| {
m.write_obj(val, addr).unwrap()
})
.unwrap();
dirty_offset += step;
// Test `read_from`.
h.test_access(bytes, dirty_offset, BUF_SIZE, |m, addr| {
assert_eq!(
m.read_from(addr, &mut Cursor::new(&buf), BUF_SIZE).unwrap(),
BUF_SIZE
)
})
.unwrap();
dirty_offset += step;
// Test `read_exact_from`.
h.test_access(bytes, dirty_offset, BUF_SIZE, |m, addr| {
m.read_exact_from(addr, &mut Cursor::new(&buf), BUF_SIZE)
.unwrap()
})
.unwrap();
dirty_offset += step;
// Test `store`.
h.test_access(bytes, dirty_offset, size_of_val(&val), |m, addr| {
m.store(val, addr, Ordering::Relaxed).unwrap()
})
.unwrap();
}
// This function and the next are currently conditionally compiled because we only use
// them to test the mmap-based backend implementations for now. Going forward, the generic
// test functions defined here can be placed in a separate module (i.e. `test_utilities`)
// which is gated by a feature and can be used for testing purposes by other crates as well.
#[cfg(feature = "backend-mmap")]
fn test_guest_memory_region<R: GuestMemoryRegion>(region: &R) {
let dirty_addr = MemoryRegionAddress(0x0);
let val = 123u64;
let dirty_len = size_of_val(&val);
let slice = region.get_slice(dirty_addr, dirty_len).unwrap();
assert!(range_is_clean(region.bitmap(), 0, region.len() as usize));
assert!(range_is_clean(slice.bitmap(), 0, dirty_len));
region.write_obj(val, dirty_addr).unwrap();
assert!(range_is_dirty(
region.bitmap(),
dirty_addr.0 as usize,
dirty_len
));
assert!(range_is_dirty(slice.bitmap(), 0, dirty_len));
// Finally, let's invoke the generic tests for `R: Bytes`. It's ok to pass the same
// `region` handle because `test_bytes` starts performing writes after the range that's
// been already dirtied in the first part of this test.
test_bytes(
region,
|r: &R, start: usize, len: usize, clean: bool| {
check_range(r.bitmap(), start, len, clean)
},
|offset| MemoryRegionAddress(offset as u64),
0x1000,
);
}
#[cfg(feature = "backend-mmap")]
// Assumptions about M generated by f ...
pub fn test_guest_memory_and_region<M, F>(f: F)
where
M: GuestMemory,
F: Fn() -> M,
{
let m = f();
let dirty_addr = GuestAddress(0x1000);
let val = 123u64;
let dirty_len = size_of_val(&val);
let (region, region_addr) = m.to_region_addr(dirty_addr).unwrap();
let slice = m.get_slice(dirty_addr, dirty_len).unwrap();
assert!(range_is_clean(region.bitmap(), 0, region.len() as usize));
assert!(range_is_clean(slice.bitmap(), 0, dirty_len));
m.write_obj(val, dirty_addr).unwrap();
assert!(range_is_dirty(
region.bitmap(),
region_addr.0 as usize,
dirty_len
));
assert!(range_is_dirty(slice.bitmap(), 0, dirty_len));
// Now let's invoke the tests for the inner `GuestMemoryRegion` type.
test_guest_memory_region(f().find_region(GuestAddress(0)).unwrap());
// Finally, let's invoke the generic tests for `Bytes`.
let check_range_closure = |m: &M, start: usize, len: usize, clean: bool| -> bool {
let mut check_result = true;
m.try_access(len, GuestAddress(start as u64), |_, size, reg_addr, reg| {
if !check_range(reg.bitmap(), reg_addr.0 as usize, size, clean) {
check_result = false;
}
Ok(size)
})
.unwrap();
check_result
};
test_bytes(
&f(),
check_range_closure,
|offset| GuestAddress(offset as u64),
0x1000,
);
}
pub fn test_volatile_memory<M: VolatileMemory>(m: &M) {
assert!(m.len() >= 0x8000);
let dirty_offset = 0x1000;
let val = 123u64;
let dirty_len = size_of_val(&val);
let get_ref_offset = 0x2000;
let array_ref_offset = 0x3000;
let s1 = m.as_volatile_slice();
let s2 = m.get_slice(dirty_offset, dirty_len).unwrap();
assert!(range_is_clean(s1.bitmap(), 0, s1.len()));
assert!(range_is_clean(s2.bitmap(), 0, s2.len()));
s1.write_obj(val, dirty_offset).unwrap();
assert!(range_is_dirty(s1.bitmap(), dirty_offset, dirty_len));
assert!(range_is_dirty(s2.bitmap(), 0, dirty_len));
let v_ref = m.get_ref::<u64>(get_ref_offset).unwrap();
assert!(range_is_clean(s1.bitmap(), get_ref_offset, dirty_len));
v_ref.store(val);
assert!(range_is_dirty(s1.bitmap(), get_ref_offset, dirty_len));
let arr_ref = m.get_array_ref::<u64>(array_ref_offset, 1).unwrap();
assert!(range_is_clean(s1.bitmap(), array_ref_offset, dirty_len));
arr_ref.store(0, val);
assert!(range_is_dirty(s1.bitmap(), array_ref_offset, dirty_len));
}
}