1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
//! Reader-based compression/decompression streams
use std::io::prelude::*;
use std::io::{self, BufReader};
#[cfg(feature = "tokio")]
use futures::Poll;
#[cfg(feature = "tokio")]
use tokio_io::{AsyncRead, AsyncWrite};
use crate::bufread;
use crate::stream::Stream;
/// A compression stream which wraps an uncompressed stream of data. Compressed
/// data will be read from the stream.
pub struct XzEncoder<R: Read> {
inner: bufread::XzEncoder<BufReader<R>>,
}
/// A decompression stream which wraps a compressed stream of data. Decompressed
/// data will be read from the stream.
pub struct XzDecoder<R: Read> {
inner: bufread::XzDecoder<BufReader<R>>,
}
impl<R: Read> XzEncoder<R> {
/// Create a new compression stream which will compress at the given level
/// to read compress output to the give output stream.
///
/// The `level` argument here is typically 0-9 with 6 being a good default.
pub fn new(r: R, level: u32) -> XzEncoder<R> {
XzEncoder {
inner: bufread::XzEncoder::new(BufReader::new(r), level),
}
}
/// Creates a new encoder with a custom `Stream`.
///
/// The `Stream` can be pre-configured for multithreaded encoding, different
/// compression options/tuning, etc.
pub fn new_stream(r: R, stream: Stream) -> XzEncoder<R> {
XzEncoder {
inner: bufread::XzEncoder::new_stream(BufReader::new(r), stream),
}
}
/// Acquires a reference to the underlying stream
pub fn get_ref(&self) -> &R {
self.inner.get_ref().get_ref()
}
/// Acquires a mutable reference to the underlying stream
///
/// Note that mutation of the stream may result in surprising results if
/// this encoder is continued to be used.
pub fn get_mut(&mut self) -> &mut R {
self.inner.get_mut().get_mut()
}
/// Unwrap the underlying writer, finishing the compression stream.
pub fn into_inner(self) -> R {
self.inner.into_inner().into_inner()
}
/// Returns the number of bytes produced by the compressor
/// (e.g. the number of bytes read from this stream)
///
/// Note that, due to buffering, this only bears any relation to
/// total_in() when the compressor chooses to flush its data
/// (unfortunately, this won't happen this won't happen in general
/// at the end of the stream, because the compressor doesn't know
/// if there's more data to come). At that point,
/// `total_out() / total_in()` would be the compression ratio.
pub fn total_out(&self) -> u64 {
self.inner.total_out()
}
/// Returns the number of bytes consumed by the compressor
/// (e.g. the number of bytes read from the underlying stream)
pub fn total_in(&self) -> u64 {
self.inner.total_in()
}
}
impl<R: Read> Read for XzEncoder<R> {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
self.inner.read(buf)
}
}
#[cfg(feature = "tokio")]
impl<R: AsyncRead> AsyncRead for XzEncoder<R> {}
impl<W: Write + Read> Write for XzEncoder<W> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.get_mut().write(buf)
}
fn flush(&mut self) -> io::Result<()> {
self.get_mut().flush()
}
}
#[cfg(feature = "tokio")]
impl<R: AsyncWrite + Read> AsyncWrite for XzEncoder<R> {
fn shutdown(&mut self) -> Poll<(), io::Error> {
self.get_mut().shutdown()
}
}
impl<R: Read> XzDecoder<R> {
/// Create a new decompression stream, which will read compressed
/// data from the given input stream, and decompress one xz stream.
/// It may also consume input data that follows the xz stream.
/// Use [`xz::bufread::XzDecoder`] instead to process a mix of xz and non-xz data.
pub fn new(r: R) -> XzDecoder<R> {
XzDecoder {
inner: bufread::XzDecoder::new(BufReader::new(r)),
}
}
/// Create a new decompression stream, which will read compressed
/// data from the given input and decompress all the xz stream it contains.
pub fn new_multi_decoder(r: R) -> XzDecoder<R> {
XzDecoder {
inner: bufread::XzDecoder::new_multi_decoder(BufReader::new(r)),
}
}
/// Creates a new decoder with a custom `Stream`.
///
/// The `Stream` can be pre-configured for various checks, different
/// decompression options/tuning, etc.
pub fn new_stream(r: R, stream: Stream) -> XzDecoder<R> {
XzDecoder {
inner: bufread::XzDecoder::new_stream(BufReader::new(r), stream),
}
}
/// Acquires a reference to the underlying stream
pub fn get_ref(&self) -> &R {
self.inner.get_ref().get_ref()
}
/// Acquires a mutable reference to the underlying stream
///
/// Note that mutation of the stream may result in surprising results if
/// this encoder is continued to be used.
pub fn get_mut(&mut self) -> &mut R {
self.inner.get_mut().get_mut()
}
/// Unwrap the underlying writer, finishing the compression stream.
pub fn into_inner(self) -> R {
self.inner.into_inner().into_inner()
}
/// Returns the number of bytes produced by the decompressor
/// (e.g. the number of bytes read from this stream)
///
/// Note that, due to buffering, this only bears any relation to
/// total_in() when the decompressor reaches a sync point
/// (e.g. where the original compressed stream was flushed).
/// At that point, `total_in() / total_out()` is the compression ratio.
pub fn total_out(&self) -> u64 {
self.inner.total_out()
}
/// Returns the number of bytes consumed by the decompressor
/// (e.g. the number of bytes read from the underlying stream)
pub fn total_in(&self) -> u64 {
self.inner.total_in()
}
}
impl<R: Read> Read for XzDecoder<R> {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
self.inner.read(buf)
}
}
#[cfg(feature = "tokio")]
impl<R: AsyncRead + Read> AsyncRead for XzDecoder<R> {}
impl<W: Write + Read> Write for XzDecoder<W> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.get_mut().write(buf)
}
fn flush(&mut self) -> io::Result<()> {
self.get_mut().flush()
}
}
#[cfg(feature = "tokio")]
impl<R: AsyncWrite + Read> AsyncWrite for XzDecoder<R> {
fn shutdown(&mut self) -> Poll<(), io::Error> {
self.get_mut().shutdown()
}
}
#[cfg(test)]
mod tests {
use crate::read::{XzDecoder, XzEncoder};
use rand::{thread_rng, Rng};
use std::io::prelude::*;
use std::iter;
#[test]
fn smoke() {
let m: &[u8] = &[1, 2, 3, 4, 5, 6, 7, 8];
let mut c = XzEncoder::new(m, 6);
let mut data = vec![];
c.read_to_end(&mut data).unwrap();
let mut d = XzDecoder::new(&data[..]);
let mut data2 = Vec::new();
d.read_to_end(&mut data2).unwrap();
assert_eq!(data2, m);
}
#[test]
fn smoke2() {
let m: &[u8] = &[1, 2, 3, 4, 5, 6, 7, 8];
let c = XzEncoder::new(m, 6);
let mut d = XzDecoder::new(c);
let mut data = vec![];
d.read_to_end(&mut data).unwrap();
assert_eq!(data, [1, 2, 3, 4, 5, 6, 7, 8]);
}
#[test]
fn smoke3() {
let m = vec![3u8; 128 * 1024 + 1];
let c = XzEncoder::new(&m[..], 6);
let mut d = XzDecoder::new(c);
let mut data = vec![];
d.read_to_end(&mut data).unwrap();
assert!(data == &m[..]);
}
#[test]
fn self_terminating() {
let m = vec![3u8; 128 * 1024 + 1];
let mut c = XzEncoder::new(&m[..], 6);
let mut result = Vec::new();
c.read_to_end(&mut result).unwrap();
let mut rng = thread_rng();
let v = iter::repeat_with(|| rng.gen::<u8>())
.take(1024)
.collect::<Vec<_>>();
for _ in 0..200 {
result.extend(v.iter().map(|x| *x));
}
let mut d = XzDecoder::new(&result[..]);
let mut data = Vec::with_capacity(m.len());
unsafe {
data.set_len(m.len());
}
assert!(d.read(&mut data).unwrap() == m.len());
assert!(data == &m[..]);
}
#[test]
fn zero_length_read_at_eof() {
let m = Vec::new();
let mut c = XzEncoder::new(&m[..], 6);
let mut result = Vec::new();
c.read_to_end(&mut result).unwrap();
let mut d = XzDecoder::new(&result[..]);
let mut data = Vec::new();
assert!(d.read(&mut data).unwrap() == 0);
}
#[test]
fn zero_length_read_with_data() {
let m = vec![3u8; 128 * 1024 + 1];
let mut c = XzEncoder::new(&m[..], 6);
let mut result = Vec::new();
c.read_to_end(&mut result).unwrap();
let mut d = XzDecoder::new(&result[..]);
let mut data = Vec::new();
assert!(d.read(&mut data).unwrap() == 0);
}
#[test]
fn qc() {
::quickcheck::quickcheck(test as fn(_) -> _);
fn test(v: Vec<u8>) -> bool {
let r = XzEncoder::new(&v[..], 6);
let mut r = XzDecoder::new(r);
let mut v2 = Vec::new();
r.read_to_end(&mut v2).unwrap();
v == v2
}
}
#[test]
fn two_streams() {
let mut input_stream1: Vec<u8> = Vec::new();
let mut input_stream2: Vec<u8> = Vec::new();
let mut all_input: Vec<u8> = Vec::new();
// Generate input data.
const STREAM1_SIZE: usize = 1024;
for num in 0..STREAM1_SIZE {
input_stream1.push(num as u8)
}
const STREAM2_SIZE: usize = 532;
for num in 0..STREAM2_SIZE {
input_stream2.push((num + 32) as u8)
}
all_input.extend(&input_stream1);
all_input.extend(&input_stream2);
// Make a vector with compressed data
let mut decoder_input = Vec::new();
{
let mut encoder = XzEncoder::new(&input_stream1[..], 6);
encoder.read_to_end(&mut decoder_input).unwrap();
}
{
let mut encoder = XzEncoder::new(&input_stream2[..], 6);
encoder.read_to_end(&mut decoder_input).unwrap();
}
// Decoder must be able to read the 2 concatenated xz streams and get the same data as input.
let mut decoder_reader = &decoder_input[..];
{
// using `XzDecoder::new` here would fail because only 1 xz stream would be processed.
let mut decoder = XzDecoder::new_multi_decoder(&mut decoder_reader);
let mut decompressed_data = vec![0u8; all_input.len()];
assert_eq!(
decoder.read(&mut decompressed_data).unwrap(),
all_input.len()
);
assert_eq!(decompressed_data, &all_input[..]);
}
}
}