1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
//! The crust of the OpenTelemetry metrics SDK.
//!
//! ## Configuration
//!
//! The metrics SDK configuration is stored with each [SdkMeterProvider].
//! Configuration for [Resource]s, [View]s, and [ManualReader] or
//! [PeriodicReader] instances can be specified.
//!
//! ### Example
//!
//! ```
//! use opentelemetry::global;
//! use opentelemetry::KeyValue;
//! use opentelemetry_sdk::{metrics::SdkMeterProvider, Resource};
//!
//! // Generate SDK configuration, resource, views, etc
//! let resource = Resource::default(); // default attributes about the current process
//!
//! // Create a meter provider with the desired config
//! let meter_provider = SdkMeterProvider::builder().with_resource(resource).build();
//! global::set_meter_provider(meter_provider.clone());
//!
//! // Use the meter provider to create meter instances
//! let meter = global::meter("my_app");
//!
//! // Create instruments scoped to the meter
//! let counter = meter
//!     .u64_counter("power_consumption")
//!     .with_unit("kWh")
//!     .build();
//!
//! // use instruments to record measurements
//! counter.add(10, &[KeyValue::new("rate", "standard")]);
//!
//! // shutdown the provider at the end of the application to ensure any metrics not yet
//! // exported are flushed.
//! meter_provider.shutdown().unwrap();
//! ```
//!
//! [Resource]: crate::Resource

pub(crate) mod aggregation;
pub mod data;
mod error;
pub mod exporter;
pub(crate) mod instrument;
pub(crate) mod internal;
pub(crate) mod manual_reader;
pub(crate) mod meter;
mod meter_provider;
pub(crate) mod noop;
pub(crate) mod periodic_reader;
#[cfg(feature = "experimental_metrics_periodic_reader_no_runtime")]
pub(crate) mod periodic_reader_with_own_thread;
pub(crate) mod pipeline;
pub mod reader;
pub(crate) mod view;

pub use aggregation::*;
pub use error::{MetricError, MetricResult};
pub use manual_reader::*;
pub use meter_provider::*;
pub use periodic_reader::*;
#[cfg(feature = "experimental_metrics_periodic_reader_no_runtime")]
pub use periodic_reader_with_own_thread::*;
pub use pipeline::Pipeline;

pub use instrument::InstrumentKind;

#[cfg(feature = "spec_unstable_metrics_views")]
pub use instrument::*;
// #[cfg(not(feature = "spec_unstable_metrics_views"))]
// pub(crate) use instrument::*;

#[cfg(feature = "spec_unstable_metrics_views")]
pub use view::*;
// #[cfg(not(feature = "spec_unstable_metrics_views"))]
// pub(crate) use view::*;

use std::collections::hash_map::DefaultHasher;
use std::collections::HashSet;
use std::hash::{Hash, Hasher};

use opentelemetry::{Key, KeyValue, Value};

/// Defines the window that an aggregation was calculated over.
#[derive(Debug, Copy, Clone, Default, PartialEq, Eq, Hash)]
#[non_exhaustive]
pub enum Temporality {
    /// A measurement interval that continues to expand forward in time from a
    /// starting point.
    ///
    /// New measurements are added to all previous measurements since a start time.
    #[default]
    Cumulative,

    /// A measurement interval that resets each cycle.
    ///
    /// Measurements from one cycle are recorded independently, measurements from
    /// other cycles do not affect them.
    Delta,

    /// Configures Synchronous Counter and Histogram instruments to use
    /// Delta aggregation temporality, which allows them to shed memory
    /// following a cardinality explosion, thus use less memory.
    LowMemory,
}

/// A unique set of attributes that can be used as instrument identifiers.
///
/// This must implement [Hash], [PartialEq], and [Eq] so it may be used as
/// HashMap keys and other de-duplication methods.
#[derive(Clone, Default, Debug, PartialEq, Eq)]
pub(crate) struct AttributeSet(Vec<KeyValue>, u64);

impl From<&[KeyValue]> for AttributeSet {
    fn from(values: &[KeyValue]) -> Self {
        let mut seen_keys = HashSet::with_capacity(values.len());
        let vec = values
            .iter()
            .rev()
            .filter_map(|kv| {
                if seen_keys.insert(kv.key.clone()) {
                    Some(kv.clone())
                } else {
                    None
                }
            })
            .collect::<Vec<_>>();

        AttributeSet::new(vec)
    }
}

fn calculate_hash(values: &[KeyValue]) -> u64 {
    let mut hasher = DefaultHasher::new();
    values.iter().fold(&mut hasher, |mut hasher, item| {
        item.hash(&mut hasher);
        hasher
    });
    hasher.finish()
}

impl AttributeSet {
    fn new(mut values: Vec<KeyValue>) -> Self {
        values.sort_unstable_by(|a, b| a.key.cmp(&b.key));
        let hash = calculate_hash(&values);
        AttributeSet(values, hash)
    }

    /// Iterate over key value pairs in the set
    pub(crate) fn iter(&self) -> impl Iterator<Item = (&Key, &Value)> {
        self.0.iter().map(|kv| (&kv.key, &kv.value))
    }

    /// Returns the underlying Vec of KeyValue pairs
    pub(crate) fn into_vec(self) -> Vec<KeyValue> {
        self.0
    }
}

impl Hash for AttributeSet {
    fn hash<H: Hasher>(&self, state: &mut H) {
        state.write_u64(self.1)
    }
}

#[cfg(all(test, feature = "testing"))]
mod tests {
    use self::data::{DataPoint, HistogramDataPoint, ScopeMetrics};
    use super::*;
    use crate::metrics::data::ResourceMetrics;
    use crate::testing::metrics::InMemoryMetricExporterBuilder;
    use crate::{runtime, testing::metrics::InMemoryMetricExporter};
    use opentelemetry::metrics::{Counter, Meter, UpDownCounter};
    use opentelemetry::InstrumentationScope;
    use opentelemetry::{metrics::MeterProvider as _, KeyValue};
    use rand::{rngs, Rng, SeedableRng};
    use std::cmp::{max, min};
    use std::sync::atomic::{AtomicBool, Ordering};
    use std::sync::{Arc, Mutex};
    use std::thread;
    use std::time::Duration;

    // Run all tests in this mod
    // cargo test metrics::tests --features=testing
    // Note for all tests from this point onwards in this mod:
    // "multi_thread" tokio flavor must be used else flush won't
    // be able to make progress!

    #[tokio::test(flavor = "multi_thread", worker_threads = 1)]
    async fn invalid_instrument_config_noops() {
        // Run this test with stdout enabled to see output.
        // cargo test invalid_instrument_config_noops --features=testing -- --nocapture
        let invalid_instrument_names = vec![
            "_startWithNoneAlphabet",
            "utf8char锈",
            "a".repeat(256).leak(),
            "invalid name",
        ];
        for name in invalid_instrument_names {
            let test_context = TestContext::new(Temporality::Cumulative);
            let counter = test_context.meter().u64_counter(name).build();
            counter.add(1, &[]);

            let up_down_counter = test_context.meter().i64_up_down_counter(name).build();
            up_down_counter.add(1, &[]);

            let gauge = test_context.meter().f64_gauge(name).build();
            gauge.record(1.9, &[]);

            let histogram = test_context.meter().f64_histogram(name).build();
            histogram.record(1.0, &[]);

            let _observable_counter = test_context
                .meter()
                .u64_observable_counter(name)
                .with_callback(move |observer| {
                    observer.observe(1, &[]);
                })
                .build();

            let _observable_gauge = test_context
                .meter()
                .f64_observable_gauge(name)
                .with_callback(move |observer| {
                    observer.observe(1.0, &[]);
                })
                .build();

            let _observable_up_down_counter = test_context
                .meter()
                .i64_observable_up_down_counter(name)
                .with_callback(move |observer| {
                    observer.observe(1, &[]);
                })
                .build();

            test_context.flush_metrics();

            // As instrument name is invalid, no metrics should be exported
            test_context.check_no_metrics();
        }
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 1)]
    async fn counter_aggregation_delta() {
        // Run this test with stdout enabled to see output.
        // cargo test counter_aggregation_delta --features=testing -- --nocapture
        counter_aggregation_helper(Temporality::Delta);
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 1)]
    async fn counter_aggregation_cumulative() {
        // Run this test with stdout enabled to see output.
        // cargo test counter_aggregation_cumulative --features=testing -- --nocapture
        counter_aggregation_helper(Temporality::Cumulative);
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 1)]
    async fn counter_aggregation_no_attributes_cumulative() {
        let mut test_context = TestContext::new(Temporality::Cumulative);
        let counter = test_context.u64_counter("test", "my_counter", None);

        counter.add(50, &[]);
        test_context.flush_metrics();

        let sum = test_context.get_aggregation::<data::Sum<u64>>("my_counter", None);

        assert_eq!(sum.data_points.len(), 1, "Expected only one data point");
        assert!(sum.is_monotonic, "Should produce monotonic.");
        assert_eq!(
            sum.temporality,
            Temporality::Cumulative,
            "Should produce cumulative"
        );

        let data_point = &sum.data_points[0];
        assert!(data_point.attributes.is_empty(), "Non-empty attribute set");
        assert_eq!(data_point.value, 50, "Unexpected data point value");
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 1)]
    async fn counter_aggregation_no_attributes_delta() {
        let mut test_context = TestContext::new(Temporality::Delta);
        let counter = test_context.u64_counter("test", "my_counter", None);

        counter.add(50, &[]);
        test_context.flush_metrics();

        let sum = test_context.get_aggregation::<data::Sum<u64>>("my_counter", None);

        assert_eq!(sum.data_points.len(), 1, "Expected only one data point");
        assert!(sum.is_monotonic, "Should produce monotonic.");
        assert_eq!(sum.temporality, Temporality::Delta, "Should produce delta");

        let data_point = &sum.data_points[0];
        assert!(data_point.attributes.is_empty(), "Non-empty attribute set");
        assert_eq!(data_point.value, 50, "Unexpected data point value");
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 1)]
    async fn counter_aggregation_overflow_delta() {
        counter_aggregation_overflow_helper(Temporality::Delta);
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 1)]
    async fn counter_aggregation_overflow_cumulative() {
        counter_aggregation_overflow_helper(Temporality::Cumulative);
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 1)]
    async fn counter_aggregation_attribute_order_sorted_first_delta() {
        // Run this test with stdout enabled to see output.
        // cargo test counter_aggregation_attribute_order_sorted_first_delta --features=testing -- --nocapture
        counter_aggregation_attribute_order_helper(Temporality::Delta, true);
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 1)]
    async fn counter_aggregation_attribute_order_sorted_first_cumulative() {
        // Run this test with stdout enabled to see output.
        // cargo test counter_aggregation_attribute_order_sorted_first_cumulative --features=testing -- --nocapture
        counter_aggregation_attribute_order_helper(Temporality::Cumulative, true);
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 1)]
    async fn counter_aggregation_attribute_order_unsorted_first_delta() {
        // Run this test with stdout enabled to see output.
        // cargo test counter_aggregation_attribute_order_unsorted_first_delta --features=testing -- --nocapture

        counter_aggregation_attribute_order_helper(Temporality::Delta, false);
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 1)]
    async fn counter_aggregation_attribute_order_unsorted_first_cumulative() {
        // Run this test with stdout enabled to see output.
        // cargo test counter_aggregation_attribute_order_unsorted_first_cumulative --features=testing -- --nocapture

        counter_aggregation_attribute_order_helper(Temporality::Cumulative, false);
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 1)]
    async fn histogram_aggregation_cumulative() {
        // Run this test with stdout enabled to see output.
        // cargo test histogram_aggregation_cumulative --features=testing -- --nocapture
        histogram_aggregation_helper(Temporality::Cumulative);
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 1)]
    async fn histogram_aggregation_delta() {
        // Run this test with stdout enabled to see output.
        // cargo test histogram_aggregation_delta --features=testing -- --nocapture
        histogram_aggregation_helper(Temporality::Delta);
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 1)]
    async fn histogram_aggregation_with_custom_bounds() {
        // Run this test with stdout enabled to see output.
        // cargo test histogram_aggregation_with_custom_bounds --features=testing -- --nocapture
        histogram_aggregation_with_custom_bounds_helper(Temporality::Delta);
        histogram_aggregation_with_custom_bounds_helper(Temporality::Cumulative);
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 1)]
    async fn updown_counter_aggregation_cumulative() {
        // Run this test with stdout enabled to see output.
        // cargo test updown_counter_aggregation_cumulative --features=testing -- --nocapture
        updown_counter_aggregation_helper(Temporality::Cumulative);
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 1)]
    async fn updown_counter_aggregation_delta() {
        // Run this test with stdout enabled to see output.
        // cargo test updown_counter_aggregation_delta --features=testing -- --nocapture
        updown_counter_aggregation_helper(Temporality::Delta);
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 1)]
    async fn gauge_aggregation() {
        // Run this test with stdout enabled to see output.
        // cargo test gauge_aggregation --features=testing -- --nocapture

        // Gauge should use last value aggregation regardless of the aggregation temporality used.
        gauge_aggregation_helper(Temporality::Delta);
        gauge_aggregation_helper(Temporality::Cumulative);
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 1)]
    async fn observable_gauge_aggregation() {
        // Run this test with stdout enabled to see output.
        // cargo test observable_gauge_aggregation --features=testing -- --nocapture

        // Gauge should use last value aggregation regardless of the aggregation temporality used.
        observable_gauge_aggregation_helper(Temporality::Delta, false);
        observable_gauge_aggregation_helper(Temporality::Delta, true);
        observable_gauge_aggregation_helper(Temporality::Cumulative, false);
        observable_gauge_aggregation_helper(Temporality::Cumulative, true);
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 1)]
    async fn observable_counter_aggregation_cumulative_non_zero_increment() {
        // Run this test with stdout enabled to see output.
        // cargo test observable_counter_aggregation_cumulative_non_zero_increment --features=testing -- --nocapture
        observable_counter_aggregation_helper(Temporality::Cumulative, 100, 10, 4, false);
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 1)]
    async fn observable_counter_aggregation_cumulative_non_zero_increment_no_attrs() {
        // Run this test with stdout enabled to see output.
        // cargo test observable_counter_aggregation_cumulative_non_zero_increment_no_attrs --features=testing -- --nocapture
        observable_counter_aggregation_helper(Temporality::Cumulative, 100, 10, 4, true);
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 1)]
    async fn observable_counter_aggregation_delta_non_zero_increment() {
        // Run this test with stdout enabled to see output.
        // cargo test observable_counter_aggregation_delta_non_zero_increment --features=testing -- --nocapture
        observable_counter_aggregation_helper(Temporality::Delta, 100, 10, 4, false);
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 1)]
    async fn observable_counter_aggregation_delta_non_zero_increment_no_attrs() {
        // Run this test with stdout enabled to see output.
        // cargo test observable_counter_aggregation_delta_non_zero_increment_no_attrs --features=testing -- --nocapture
        observable_counter_aggregation_helper(Temporality::Delta, 100, 10, 4, true);
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 1)]
    async fn observable_counter_aggregation_cumulative_zero_increment() {
        // Run this test with stdout enabled to see output.
        // cargo test observable_counter_aggregation_cumulative_zero_increment --features=testing -- --nocapture
        observable_counter_aggregation_helper(Temporality::Cumulative, 100, 0, 4, false);
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 1)]
    async fn observable_counter_aggregation_cumulative_zero_increment_no_attrs() {
        // Run this test with stdout enabled to see output.
        // cargo test observable_counter_aggregation_cumulative_zero_increment_no_attrs --features=testing -- --nocapture
        observable_counter_aggregation_helper(Temporality::Cumulative, 100, 0, 4, true);
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 1)]
    async fn observable_counter_aggregation_delta_zero_increment() {
        // Run this test with stdout enabled to see output.
        // cargo test observable_counter_aggregation_delta_zero_increment --features=testing -- --nocapture
        observable_counter_aggregation_helper(Temporality::Delta, 100, 0, 4, false);
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 1)]
    async fn observable_counter_aggregation_delta_zero_increment_no_attrs() {
        // Run this test with stdout enabled to see output.
        // cargo test observable_counter_aggregation_delta_zero_increment_no_attrs --features=testing -- --nocapture
        observable_counter_aggregation_helper(Temporality::Delta, 100, 0, 4, true);
    }

    fn observable_counter_aggregation_helper(
        temporality: Temporality,
        start: u64,
        increment: u64,
        length: u64,
        is_empty_attributes: bool,
    ) {
        // Arrange
        let mut test_context = TestContext::new(temporality);
        let attributes = if is_empty_attributes {
            vec![]
        } else {
            vec![KeyValue::new("key1", "value1")]
        };
        // The Observable counter reports values[0], values[1],....values[n] on each flush.
        let values: Vec<u64> = (0..length).map(|i| start + i * increment).collect();
        println!("Testing with observable values: {:?}", values);
        let values = Arc::new(values);
        let values_clone = values.clone();
        let i = Arc::new(Mutex::new(0));
        let _observable_counter = test_context
            .meter()
            .u64_observable_counter("my_observable_counter")
            .with_unit("my_unit")
            .with_callback(move |observer| {
                let mut index = i.lock().unwrap();
                if *index < values.len() {
                    observer.observe(values[*index], &attributes);
                    *index += 1;
                }
            })
            .build();

        for (iter, v) in values_clone.iter().enumerate() {
            test_context.flush_metrics();
            let sum = test_context.get_aggregation::<data::Sum<u64>>("my_observable_counter", None);
            assert_eq!(sum.data_points.len(), 1);
            assert!(sum.is_monotonic, "Counter should produce monotonic.");
            if let Temporality::Cumulative = temporality {
                assert_eq!(
                    sum.temporality,
                    Temporality::Cumulative,
                    "Should produce cumulative"
                );
            } else {
                assert_eq!(sum.temporality, Temporality::Delta, "Should produce delta");
            }

            // find and validate datapoint
            let data_point = if is_empty_attributes {
                &sum.data_points[0]
            } else {
                find_datapoint_with_key_value(&sum.data_points, "key1", "value1")
                    .expect("datapoint with key1=value1 expected")
            };

            if let Temporality::Cumulative = temporality {
                // Cumulative counter should have the value as is.
                assert_eq!(data_point.value, *v);
            } else {
                // Delta counter should have the increment value.
                // Except for the first value which should be the start value.
                if iter == 0 {
                    assert_eq!(data_point.value, start);
                } else {
                    assert_eq!(data_point.value, increment);
                }
            }

            test_context.reset_metrics();
        }
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 1)]
    async fn counter_duplicate_instrument_merge() {
        // Arrange
        let exporter = InMemoryMetricExporter::default();
        let reader = PeriodicReader::builder(exporter.clone(), runtime::Tokio).build();
        let meter_provider = SdkMeterProvider::builder().with_reader(reader).build();

        // Act
        let meter = meter_provider.meter("test");
        let counter = meter
            .u64_counter("my_counter")
            .with_unit("my_unit")
            .with_description("my_description")
            .build();

        let counter_duplicated = meter
            .u64_counter("my_counter")
            .with_unit("my_unit")
            .with_description("my_description")
            .build();

        let attribute = vec![KeyValue::new("key1", "value1")];
        counter.add(10, &attribute);
        counter_duplicated.add(5, &attribute);

        meter_provider.force_flush().unwrap();

        // Assert
        let resource_metrics = exporter
            .get_finished_metrics()
            .expect("metrics are expected to be exported.");
        assert!(
            resource_metrics[0].scope_metrics[0].metrics.len() == 1,
            "There should be single metric merging duplicate instruments"
        );
        let metric = &resource_metrics[0].scope_metrics[0].metrics[0];
        assert_eq!(metric.name, "my_counter");
        assert_eq!(metric.unit, "my_unit");
        let sum = metric
            .data
            .as_any()
            .downcast_ref::<data::Sum<u64>>()
            .expect("Sum aggregation expected for Counter instruments by default");

        // Expecting 1 time-series.
        assert_eq!(sum.data_points.len(), 1);

        let datapoint = &sum.data_points[0];
        assert_eq!(datapoint.value, 15);
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 1)]
    async fn counter_duplicate_instrument_different_meter_no_merge() {
        // Arrange
        let exporter = InMemoryMetricExporter::default();
        let reader = PeriodicReader::builder(exporter.clone(), runtime::Tokio).build();
        let meter_provider = SdkMeterProvider::builder().with_reader(reader).build();

        // Act
        let meter1 = meter_provider.meter("test.meter1");
        let meter2 = meter_provider.meter("test.meter2");
        let counter1 = meter1
            .u64_counter("my_counter")
            .with_unit("my_unit")
            .with_description("my_description")
            .build();

        let counter2 = meter2
            .u64_counter("my_counter")
            .with_unit("my_unit")
            .with_description("my_description")
            .build();

        let attribute = vec![KeyValue::new("key1", "value1")];
        counter1.add(10, &attribute);
        counter2.add(5, &attribute);

        meter_provider.force_flush().unwrap();

        // Assert
        let resource_metrics = exporter
            .get_finished_metrics()
            .expect("metrics are expected to be exported.");
        assert!(
            resource_metrics[0].scope_metrics.len() == 2,
            "There should be 2 separate scope"
        );
        assert!(
            resource_metrics[0].scope_metrics[0].metrics.len() == 1,
            "There should be single metric for the scope"
        );
        assert!(
            resource_metrics[0].scope_metrics[1].metrics.len() == 1,
            "There should be single metric for the scope"
        );

        let scope1 = find_scope_metric(&resource_metrics[0].scope_metrics, "test.meter1");
        let scope2 = find_scope_metric(&resource_metrics[0].scope_metrics, "test.meter2");

        if let Some(scope1) = scope1 {
            let metric1 = &scope1.metrics[0];
            assert_eq!(metric1.name, "my_counter");
            assert_eq!(metric1.unit, "my_unit");
            assert_eq!(metric1.description, "my_description");
            let sum1 = metric1
                .data
                .as_any()
                .downcast_ref::<data::Sum<u64>>()
                .expect("Sum aggregation expected for Counter instruments by default");

            // Expecting 1 time-series.
            assert_eq!(sum1.data_points.len(), 1);

            let datapoint1 = &sum1.data_points[0];
            assert_eq!(datapoint1.value, 10);
        } else {
            panic!("No MetricScope found for 'test.meter1'");
        }

        if let Some(scope2) = scope2 {
            let metric2 = &scope2.metrics[0];
            assert_eq!(metric2.name, "my_counter");
            assert_eq!(metric2.unit, "my_unit");
            assert_eq!(metric2.description, "my_description");
            let sum2 = metric2
                .data
                .as_any()
                .downcast_ref::<data::Sum<u64>>()
                .expect("Sum aggregation expected for Counter instruments by default");

            // Expecting 1 time-series.
            assert_eq!(sum2.data_points.len(), 1);

            let datapoint2 = &sum2.data_points[0];
            assert_eq!(datapoint2.value, 5);
        } else {
            panic!("No MetricScope found for 'test.meter2'");
        }
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 1)]
    async fn instrumentation_scope_identity_test() {
        // Arrange
        let exporter = InMemoryMetricExporter::default();
        let reader = PeriodicReader::builder(exporter.clone(), runtime::Tokio).build();
        let meter_provider = SdkMeterProvider::builder().with_reader(reader).build();

        // Act
        // Meters are identical except for scope attributes, but scope attributes are not an identifying property.
        // Hence there should be a single metric stream output for this test.
        let make_scope = |attributes| {
            InstrumentationScope::builder("test.meter")
                .with_version("v0.1.0")
                .with_schema_url("http://example.com")
                .with_attributes(attributes)
                .build()
        };

        let meter1 =
            meter_provider.meter_with_scope(make_scope(vec![KeyValue::new("key", "value1")]));
        let meter2 =
            meter_provider.meter_with_scope(make_scope(vec![KeyValue::new("key", "value2")]));

        let counter1 = meter1
            .u64_counter("my_counter")
            .with_unit("my_unit")
            .with_description("my_description")
            .build();

        let counter2 = meter2
            .u64_counter("my_counter")
            .with_unit("my_unit")
            .with_description("my_description")
            .build();

        let attribute = vec![KeyValue::new("key1", "value1")];
        counter1.add(10, &attribute);
        counter2.add(5, &attribute);

        meter_provider.force_flush().unwrap();

        // Assert
        let resource_metrics = exporter
            .get_finished_metrics()
            .expect("metrics are expected to be exported.");
        println!("resource_metrics: {:?}", resource_metrics);
        assert!(
            resource_metrics[0].scope_metrics.len() == 1,
            "There should be a single scope as the meters are identical"
        );
        assert!(
            resource_metrics[0].scope_metrics[0].metrics.len() == 1,
            "There should be single metric for the scope as instruments are identical"
        );

        let scope = &resource_metrics[0].scope_metrics[0].scope;
        assert_eq!(scope.name(), "test.meter");
        assert_eq!(scope.version(), Some("v0.1.0"));
        assert_eq!(scope.schema_url(), Some("http://example.com"));

        // This is validating current behavior, but it is not guaranteed to be the case in the future,
        // as this is a user error and SDK reserves right to change this behavior.
        assert!(scope.attributes().eq(&[KeyValue::new("key", "value1")]));

        let metric = &resource_metrics[0].scope_metrics[0].metrics[0];
        assert_eq!(metric.name, "my_counter");
        assert_eq!(metric.unit, "my_unit");
        assert_eq!(metric.description, "my_description");
        let sum = metric
            .data
            .as_any()
            .downcast_ref::<data::Sum<u64>>()
            .expect("Sum aggregation expected for Counter instruments by default");

        // Expecting 1 time-series.
        assert_eq!(sum.data_points.len(), 1);

        let datapoint = &sum.data_points[0];
        assert_eq!(datapoint.value, 15);
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 1)]
    async fn histogram_aggregation_with_invalid_aggregation_should_proceed_as_if_view_not_exist() {
        // Run this test with stdout enabled to see output.
        // cargo test histogram_aggregation_with_invalid_aggregation_should_proceed_as_if_view_not_exist --features=testing -- --nocapture

        // Arrange
        let exporter = InMemoryMetricExporter::default();
        let reader = PeriodicReader::builder(exporter.clone(), runtime::Tokio).build();
        let criteria = Instrument::new().name("test_histogram");
        let stream_invalid_aggregation = Stream::new()
            .aggregation(Aggregation::ExplicitBucketHistogram {
                boundaries: vec![0.9, 1.9, 1.2, 1.3, 1.4, 1.5], // invalid boundaries
                record_min_max: false,
            })
            .name("test_histogram_renamed")
            .unit("test_unit_renamed");

        let view =
            new_view(criteria, stream_invalid_aggregation).expect("Expected to create a new view");
        let meter_provider = SdkMeterProvider::builder()
            .with_reader(reader)
            .with_view(view)
            .build();

        // Act
        let meter = meter_provider.meter("test");
        let histogram = meter
            .f64_histogram("test_histogram")
            .with_unit("test_unit")
            .build();

        histogram.record(1.5, &[KeyValue::new("key1", "value1")]);
        meter_provider.force_flush().unwrap();

        // Assert
        let resource_metrics = exporter
            .get_finished_metrics()
            .expect("metrics are expected to be exported.");
        assert!(!resource_metrics.is_empty());
        let metric = &resource_metrics[0].scope_metrics[0].metrics[0];
        assert_eq!(
            metric.name, "test_histogram",
            "View rename should be ignored and original name retained."
        );
        assert_eq!(
            metric.unit, "test_unit",
            "View rename of unit should be ignored and original unit retained."
        );
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 1)]
    #[ignore = "Spatial aggregation is not yet implemented."]
    async fn spatial_aggregation_when_view_drops_attributes_observable_counter() {
        // cargo test metrics::tests::spatial_aggregation_when_view_drops_attributes_observable_counter --features=testing

        // Arrange
        let exporter = InMemoryMetricExporter::default();
        let reader = PeriodicReader::builder(exporter.clone(), runtime::Tokio).build();
        let criteria = Instrument::new().name("my_observable_counter");
        // View drops all attributes.
        let stream_invalid_aggregation = Stream::new().allowed_attribute_keys(vec![]);

        let view =
            new_view(criteria, stream_invalid_aggregation).expect("Expected to create a new view");
        let meter_provider = SdkMeterProvider::builder()
            .with_reader(reader)
            .with_view(view)
            .build();

        // Act
        let meter = meter_provider.meter("test");
        let _observable_counter = meter
            .u64_observable_counter("my_observable_counter")
            .with_callback(|observer| {
                observer.observe(
                    100,
                    &[
                        KeyValue::new("statusCode", "200"),
                        KeyValue::new("verb", "get"),
                    ],
                );

                observer.observe(
                    100,
                    &[
                        KeyValue::new("statusCode", "200"),
                        KeyValue::new("verb", "post"),
                    ],
                );

                observer.observe(
                    100,
                    &[
                        KeyValue::new("statusCode", "500"),
                        KeyValue::new("verb", "get"),
                    ],
                );
            })
            .build();

        meter_provider.force_flush().unwrap();

        // Assert
        let resource_metrics = exporter
            .get_finished_metrics()
            .expect("metrics are expected to be exported.");
        assert!(!resource_metrics.is_empty());
        let metric = &resource_metrics[0].scope_metrics[0].metrics[0];
        assert_eq!(metric.name, "my_observable_counter",);

        let sum = metric
            .data
            .as_any()
            .downcast_ref::<data::Sum<u64>>()
            .expect("Sum aggregation expected for ObservableCounter instruments by default");

        // Expecting 1 time-series only, as the view drops all attributes resulting
        // in a single time-series.
        // This is failing today, due to lack of support for spatial aggregation.
        assert_eq!(sum.data_points.len(), 1);

        // find and validate the single datapoint
        let data_point = &sum.data_points[0];
        assert_eq!(data_point.value, 300);
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 1)]
    async fn spatial_aggregation_when_view_drops_attributes_counter() {
        // cargo test spatial_aggregation_when_view_drops_attributes_counter --features=testing

        // Arrange
        let exporter = InMemoryMetricExporter::default();
        let reader = PeriodicReader::builder(exporter.clone(), runtime::Tokio).build();
        let criteria = Instrument::new().name("my_counter");
        // View drops all attributes.
        let stream_invalid_aggregation = Stream::new().allowed_attribute_keys(vec![]);

        let view =
            new_view(criteria, stream_invalid_aggregation).expect("Expected to create a new view");
        let meter_provider = SdkMeterProvider::builder()
            .with_reader(reader)
            .with_view(view)
            .build();

        // Act
        let meter = meter_provider.meter("test");
        let counter = meter.u64_counter("my_counter").build();

        // Normally, this would generate 3 time-series, but since the view
        // drops all attributes, we expect only 1 time-series.
        counter.add(
            10,
            [
                KeyValue::new("statusCode", "200"),
                KeyValue::new("verb", "Get"),
            ]
            .as_ref(),
        );

        counter.add(
            10,
            [
                KeyValue::new("statusCode", "500"),
                KeyValue::new("verb", "Get"),
            ]
            .as_ref(),
        );

        counter.add(
            10,
            [
                KeyValue::new("statusCode", "200"),
                KeyValue::new("verb", "Post"),
            ]
            .as_ref(),
        );

        meter_provider.force_flush().unwrap();

        // Assert
        let resource_metrics = exporter
            .get_finished_metrics()
            .expect("metrics are expected to be exported.");
        assert!(!resource_metrics.is_empty());
        let metric = &resource_metrics[0].scope_metrics[0].metrics[0];
        assert_eq!(metric.name, "my_counter",);

        let sum = metric
            .data
            .as_any()
            .downcast_ref::<data::Sum<u64>>()
            .expect("Sum aggregation expected for Counter instruments by default");

        // Expecting 1 time-series only, as the view drops all attributes resulting
        // in a single time-series.
        // This is failing today, due to lack of support for spatial aggregation.
        assert_eq!(sum.data_points.len(), 1);
        // find and validate the single datapoint
        let data_point = &sum.data_points[0];
        assert_eq!(data_point.value, 30);
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 1)]
    async fn no_attr_cumulative_up_down_counter() {
        let mut test_context = TestContext::new(Temporality::Cumulative);
        let counter = test_context.i64_up_down_counter("test", "my_counter", Some("my_unit"));

        counter.add(50, &[]);
        test_context.flush_metrics();

        let sum = test_context.get_aggregation::<data::Sum<i64>>("my_counter", Some("my_unit"));

        assert_eq!(sum.data_points.len(), 1, "Expected only one data point");
        assert!(!sum.is_monotonic, "Should not produce monotonic.");
        assert_eq!(
            sum.temporality,
            Temporality::Cumulative,
            "Should produce cumulative"
        );

        let data_point = &sum.data_points[0];
        assert!(data_point.attributes.is_empty(), "Non-empty attribute set");
        assert_eq!(data_point.value, 50, "Unexpected data point value");
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 1)]
    async fn no_attr_up_down_counter_always_cumulative() {
        let mut test_context = TestContext::new(Temporality::Delta);
        let counter = test_context.i64_up_down_counter("test", "my_counter", Some("my_unit"));

        counter.add(50, &[]);
        test_context.flush_metrics();

        let sum = test_context.get_aggregation::<data::Sum<i64>>("my_counter", Some("my_unit"));

        assert_eq!(sum.data_points.len(), 1, "Expected only one data point");
        assert!(!sum.is_monotonic, "Should not produce monotonic.");
        assert_eq!(
            sum.temporality,
            Temporality::Cumulative,
            "Should produce Cumulative due to UpDownCounter temporality_preference"
        );

        let data_point = &sum.data_points[0];
        assert!(data_point.attributes.is_empty(), "Non-empty attribute set");
        assert_eq!(data_point.value, 50, "Unexpected data point value");
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 1)]
    async fn no_attr_cumulative_counter_value_added_after_export() {
        let mut test_context = TestContext::new(Temporality::Cumulative);
        let counter = test_context.u64_counter("test", "my_counter", None);

        counter.add(50, &[]);
        test_context.flush_metrics();
        let _ = test_context.get_aggregation::<data::Sum<u64>>("my_counter", None);
        test_context.reset_metrics();

        counter.add(5, &[]);
        test_context.flush_metrics();
        let sum = test_context.get_aggregation::<data::Sum<u64>>("my_counter", None);

        assert_eq!(sum.data_points.len(), 1, "Expected only one data point");
        assert!(sum.is_monotonic, "Should produce monotonic.");
        assert_eq!(
            sum.temporality,
            Temporality::Cumulative,
            "Should produce cumulative"
        );

        let data_point = &sum.data_points[0];
        assert!(data_point.attributes.is_empty(), "Non-empty attribute set");
        assert_eq!(data_point.value, 55, "Unexpected data point value");
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 1)]
    async fn no_attr_delta_counter_value_reset_after_export() {
        let mut test_context = TestContext::new(Temporality::Delta);
        let counter = test_context.u64_counter("test", "my_counter", None);

        counter.add(50, &[]);
        test_context.flush_metrics();
        let _ = test_context.get_aggregation::<data::Sum<u64>>("my_counter", None);
        test_context.reset_metrics();

        counter.add(5, &[]);
        test_context.flush_metrics();
        let sum = test_context.get_aggregation::<data::Sum<u64>>("my_counter", None);

        assert_eq!(sum.data_points.len(), 1, "Expected only one data point");
        assert!(sum.is_monotonic, "Should produce monotonic.");
        assert_eq!(
            sum.temporality,
            Temporality::Delta,
            "Should produce cumulative"
        );

        let data_point = &sum.data_points[0];
        assert!(data_point.attributes.is_empty(), "Non-empty attribute set");
        assert_eq!(data_point.value, 5, "Unexpected data point value");
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 1)]
    async fn second_delta_export_does_not_give_no_attr_value_if_add_not_called() {
        let mut test_context = TestContext::new(Temporality::Delta);
        let counter = test_context.u64_counter("test", "my_counter", None);

        counter.add(50, &[]);
        test_context.flush_metrics();
        let _ = test_context.get_aggregation::<data::Sum<u64>>("my_counter", None);
        test_context.reset_metrics();

        counter.add(50, &[KeyValue::new("a", "b")]);
        test_context.flush_metrics();
        let sum = test_context.get_aggregation::<data::Sum<u64>>("my_counter", None);

        let no_attr_data_point = sum.data_points.iter().find(|x| x.attributes.is_empty());

        assert!(
            no_attr_data_point.is_none(),
            "Expected no data points with no attributes"
        );
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 1)]
    async fn delta_memory_efficiency_test() {
        // Run this test with stdout enabled to see output.
        // cargo test delta_memory_efficiency_test --features=testing -- --nocapture

        // Arrange
        let mut test_context = TestContext::new(Temporality::Delta);
        let counter = test_context.u64_counter("test", "my_counter", None);

        // Act
        counter.add(1, &[KeyValue::new("key1", "value1")]);
        counter.add(1, &[KeyValue::new("key1", "value1")]);
        counter.add(1, &[KeyValue::new("key1", "value1")]);
        counter.add(1, &[KeyValue::new("key1", "value1")]);
        counter.add(1, &[KeyValue::new("key1", "value1")]);

        counter.add(1, &[KeyValue::new("key1", "value2")]);
        counter.add(1, &[KeyValue::new("key1", "value2")]);
        counter.add(1, &[KeyValue::new("key1", "value2")]);
        test_context.flush_metrics();

        let sum = test_context.get_aggregation::<data::Sum<u64>>("my_counter", None);

        // Expecting 2 time-series.
        assert_eq!(sum.data_points.len(), 2);

        // find and validate key1=value1 datapoint
        let data_point1 = find_datapoint_with_key_value(&sum.data_points, "key1", "value1")
            .expect("datapoint with key1=value1 expected");
        assert_eq!(data_point1.value, 5);

        // find and validate key1=value2 datapoint
        let data_point1 = find_datapoint_with_key_value(&sum.data_points, "key1", "value2")
            .expect("datapoint with key1=value2 expected");
        assert_eq!(data_point1.value, 3);

        test_context.exporter.reset();
        // flush again, and validate that nothing is flushed
        // as delta temporality.
        test_context.flush_metrics();

        let resource_metrics = test_context
            .exporter
            .get_finished_metrics()
            .expect("metrics are expected to be exported.");
        println!("resource_metrics: {:?}", resource_metrics);
        assert!(resource_metrics.is_empty(), "No metrics should be exported as no new measurements were recorded since last collect.");
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 1)]
    async fn counter_multithreaded() {
        // Run this test with stdout enabled to see output.
        // cargo test counter_multithreaded --features=testing -- --nocapture

        counter_multithreaded_aggregation_helper(Temporality::Delta);
        counter_multithreaded_aggregation_helper(Temporality::Cumulative);
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 1)]
    async fn counter_f64_multithreaded() {
        // Run this test with stdout enabled to see output.
        // cargo test counter_f64_multithreaded --features=testing -- --nocapture

        counter_f64_multithreaded_aggregation_helper(Temporality::Delta);
        counter_f64_multithreaded_aggregation_helper(Temporality::Cumulative);
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 1)]
    async fn histogram_multithreaded() {
        // Run this test with stdout enabled to see output.
        // cargo test histogram_multithreaded --features=testing -- --nocapture

        histogram_multithreaded_aggregation_helper(Temporality::Delta);
        histogram_multithreaded_aggregation_helper(Temporality::Cumulative);
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 1)]
    async fn histogram_f64_multithreaded() {
        // Run this test with stdout enabled to see output.
        // cargo test histogram_f64_multithreaded --features=testing -- --nocapture

        histogram_f64_multithreaded_aggregation_helper(Temporality::Delta);
        histogram_f64_multithreaded_aggregation_helper(Temporality::Cumulative);
    }
    #[tokio::test(flavor = "multi_thread", worker_threads = 1)]
    async fn synchronous_instruments_cumulative_with_gap_in_measurements() {
        // Run this test with stdout enabled to see output.
        // cargo test synchronous_instruments_cumulative_with_gap_in_measurements --features=testing -- --nocapture

        synchronous_instruments_cumulative_with_gap_in_measurements_helper("counter");
        synchronous_instruments_cumulative_with_gap_in_measurements_helper("updown_counter");
        synchronous_instruments_cumulative_with_gap_in_measurements_helper("histogram");
        synchronous_instruments_cumulative_with_gap_in_measurements_helper("gauge");
    }

    fn synchronous_instruments_cumulative_with_gap_in_measurements_helper(
        instrument_name: &'static str,
    ) {
        let mut test_context = TestContext::new(Temporality::Cumulative);
        let attributes = &[KeyValue::new("key1", "value1")];

        // Create instrument and emit measurements
        match instrument_name {
            "counter" => {
                let counter = test_context.meter().u64_counter("test_counter").build();
                counter.add(5, &[]);
                counter.add(10, attributes);
            }
            "updown_counter" => {
                let updown_counter = test_context
                    .meter()
                    .i64_up_down_counter("test_updowncounter")
                    .build();
                updown_counter.add(15, &[]);
                updown_counter.add(20, attributes);
            }
            "histogram" => {
                let histogram = test_context.meter().u64_histogram("test_histogram").build();
                histogram.record(25, &[]);
                histogram.record(30, attributes);
            }
            "gauge" => {
                let gauge = test_context.meter().u64_gauge("test_gauge").build();
                gauge.record(35, &[]);
                gauge.record(40, attributes);
            }
            _ => panic!("Incorrect instrument kind provided"),
        };

        test_context.flush_metrics();

        // Test the first export
        assert_correct_export(&mut test_context, instrument_name);

        // Reset and export again without making any measurements
        test_context.reset_metrics();

        test_context.flush_metrics();

        // Test that latest export has the same data as the previous one
        assert_correct_export(&mut test_context, instrument_name);

        fn assert_correct_export(test_context: &mut TestContext, instrument_name: &'static str) {
            match instrument_name {
                "counter" => {
                    let counter_data =
                        test_context.get_aggregation::<data::Sum<u64>>("test_counter", None);
                    assert_eq!(counter_data.data_points.len(), 2);
                    let zero_attribute_datapoint =
                        find_datapoint_with_no_attributes(&counter_data.data_points)
                            .expect("datapoint with no attributes expected");
                    assert_eq!(zero_attribute_datapoint.value, 5);
                    let data_point1 =
                        find_datapoint_with_key_value(&counter_data.data_points, "key1", "value1")
                            .expect("datapoint with key1=value1 expected");
                    assert_eq!(data_point1.value, 10);
                }
                "updown_counter" => {
                    let updown_counter_data =
                        test_context.get_aggregation::<data::Sum<i64>>("test_updowncounter", None);
                    assert_eq!(updown_counter_data.data_points.len(), 2);
                    let zero_attribute_datapoint =
                        find_datapoint_with_no_attributes(&updown_counter_data.data_points)
                            .expect("datapoint with no attributes expected");
                    assert_eq!(zero_attribute_datapoint.value, 15);
                    let data_point1 = find_datapoint_with_key_value(
                        &updown_counter_data.data_points,
                        "key1",
                        "value1",
                    )
                    .expect("datapoint with key1=value1 expected");
                    assert_eq!(data_point1.value, 20);
                }
                "histogram" => {
                    let histogram_data = test_context
                        .get_aggregation::<data::Histogram<u64>>("test_histogram", None);
                    assert_eq!(histogram_data.data_points.len(), 2);
                    let zero_attribute_datapoint =
                        find_histogram_datapoint_with_no_attributes(&histogram_data.data_points)
                            .expect("datapoint with no attributes expected");
                    assert_eq!(zero_attribute_datapoint.count, 1);
                    assert_eq!(zero_attribute_datapoint.sum, 25);
                    assert_eq!(zero_attribute_datapoint.min, Some(25));
                    assert_eq!(zero_attribute_datapoint.max, Some(25));
                    let data_point1 = find_histogram_datapoint_with_key_value(
                        &histogram_data.data_points,
                        "key1",
                        "value1",
                    )
                    .expect("datapoint with key1=value1 expected");
                    assert_eq!(data_point1.count, 1);
                    assert_eq!(data_point1.sum, 30);
                    assert_eq!(data_point1.min, Some(30));
                    assert_eq!(data_point1.max, Some(30));
                }
                "gauge" => {
                    let gauge_data =
                        test_context.get_aggregation::<data::Gauge<u64>>("test_gauge", None);
                    assert_eq!(gauge_data.data_points.len(), 2);
                    let zero_attribute_datapoint =
                        find_datapoint_with_no_attributes(&gauge_data.data_points)
                            .expect("datapoint with no attributes expected");
                    assert_eq!(zero_attribute_datapoint.value, 35);
                    let data_point1 =
                        find_datapoint_with_key_value(&gauge_data.data_points, "key1", "value1")
                            .expect("datapoint with key1=value1 expected");
                    assert_eq!(data_point1.value, 40);
                }
                _ => panic!("Incorrect instrument kind provided"),
            }
        }
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 1)]
    async fn asynchronous_instruments_cumulative_with_gap_in_measurements() {
        // Run this test with stdout enabled to see output.
        // cargo test asynchronous_instruments_cumulative_with_gap_in_measurements --features=testing -- --nocapture

        asynchronous_instruments_cumulative_with_gap_in_measurements_helper("counter");
        asynchronous_instruments_cumulative_with_gap_in_measurements_helper("updown_counter");
        asynchronous_instruments_cumulative_with_gap_in_measurements_helper("gauge");
    }

    fn asynchronous_instruments_cumulative_with_gap_in_measurements_helper(
        instrument_name: &'static str,
    ) {
        let mut test_context = TestContext::new(Temporality::Cumulative);
        let attributes = Arc::new([KeyValue::new("key1", "value1")]);

        // Create instrument and emit measurements
        match instrument_name {
            "counter" => {
                let has_run = AtomicBool::new(false);
                let _observable_counter = test_context
                    .meter()
                    .u64_observable_counter("test_counter")
                    .with_callback(move |observer| {
                        if !has_run.load(Ordering::SeqCst) {
                            observer.observe(5, &[]);
                            observer.observe(10, &*attributes.clone());
                            has_run.store(true, Ordering::SeqCst);
                        }
                    })
                    .build();
            }
            "updown_counter" => {
                let has_run = AtomicBool::new(false);
                let _observable_up_down_counter = test_context
                    .meter()
                    .i64_observable_up_down_counter("test_updowncounter")
                    .with_callback(move |observer| {
                        if !has_run.load(Ordering::SeqCst) {
                            observer.observe(15, &[]);
                            observer.observe(20, &*attributes.clone());
                            has_run.store(true, Ordering::SeqCst);
                        }
                    })
                    .build();
            }
            "gauge" => {
                let has_run = AtomicBool::new(false);
                let _observable_gauge = test_context
                    .meter()
                    .u64_observable_gauge("test_gauge")
                    .with_callback(move |observer| {
                        if !has_run.load(Ordering::SeqCst) {
                            observer.observe(25, &[]);
                            observer.observe(30, &*attributes.clone());
                            has_run.store(true, Ordering::SeqCst);
                        }
                    })
                    .build();
            }
            _ => panic!("Incorrect instrument kind provided"),
        };

        test_context.flush_metrics();

        // Test the first export
        assert_correct_export(&mut test_context, instrument_name);

        // Reset and export again without making any measurements
        test_context.reset_metrics();

        test_context.flush_metrics();

        // Test that latest export has the same data as the previous one
        assert_correct_export(&mut test_context, instrument_name);

        fn assert_correct_export(test_context: &mut TestContext, instrument_name: &'static str) {
            match instrument_name {
                "counter" => {
                    let counter_data =
                        test_context.get_aggregation::<data::Sum<u64>>("test_counter", None);
                    assert_eq!(counter_data.data_points.len(), 2);
                    assert!(counter_data.is_monotonic);
                    let zero_attribute_datapoint =
                        find_datapoint_with_no_attributes(&counter_data.data_points)
                            .expect("datapoint with no attributes expected");
                    assert_eq!(zero_attribute_datapoint.value, 5);
                    let data_point1 =
                        find_datapoint_with_key_value(&counter_data.data_points, "key1", "value1")
                            .expect("datapoint with key1=value1 expected");
                    assert_eq!(data_point1.value, 10);
                }
                "updown_counter" => {
                    let updown_counter_data =
                        test_context.get_aggregation::<data::Sum<i64>>("test_updowncounter", None);
                    assert_eq!(updown_counter_data.data_points.len(), 2);
                    assert!(!updown_counter_data.is_monotonic);
                    let zero_attribute_datapoint =
                        find_datapoint_with_no_attributes(&updown_counter_data.data_points)
                            .expect("datapoint with no attributes expected");
                    assert_eq!(zero_attribute_datapoint.value, 15);
                    let data_point1 = find_datapoint_with_key_value(
                        &updown_counter_data.data_points,
                        "key1",
                        "value1",
                    )
                    .expect("datapoint with key1=value1 expected");
                    assert_eq!(data_point1.value, 20);
                }
                "gauge" => {
                    let gauge_data =
                        test_context.get_aggregation::<data::Gauge<u64>>("test_gauge", None);
                    assert_eq!(gauge_data.data_points.len(), 2);
                    let zero_attribute_datapoint =
                        find_datapoint_with_no_attributes(&gauge_data.data_points)
                            .expect("datapoint with no attributes expected");
                    assert_eq!(zero_attribute_datapoint.value, 25);
                    let data_point1 =
                        find_datapoint_with_key_value(&gauge_data.data_points, "key1", "value1")
                            .expect("datapoint with key1=value1 expected");
                    assert_eq!(data_point1.value, 30);
                }
                _ => panic!("Incorrect instrument kind provided"),
            }
        }
    }

    fn counter_multithreaded_aggregation_helper(temporality: Temporality) {
        // Arrange
        let mut test_context = TestContext::new(temporality);
        let counter = Arc::new(test_context.u64_counter("test", "my_counter", None));

        for i in 0..10 {
            thread::scope(|s| {
                s.spawn(|| {
                    counter.add(1, &[]);

                    counter.add(1, &[KeyValue::new("key1", "value1")]);
                    counter.add(1, &[KeyValue::new("key1", "value1")]);
                    counter.add(1, &[KeyValue::new("key1", "value1")]);

                    // Test concurrent collection by forcing half of the update threads to `force_flush` metrics and sleep for some time.
                    if i % 2 == 0 {
                        test_context.flush_metrics();
                        thread::sleep(Duration::from_millis(i)); // Make each thread sleep for some time duration for better testing
                    }

                    counter.add(1, &[KeyValue::new("key1", "value1")]);
                    counter.add(1, &[KeyValue::new("key1", "value1")]);
                });
            });
        }

        test_context.flush_metrics();

        // Assert
        // We invoke `test_context.flush_metrics()` six times.
        let sums =
            test_context.get_from_multiple_aggregations::<data::Sum<u64>>("my_counter", None, 6);

        let mut sum_zero_attributes = 0;
        let mut sum_key1_value1 = 0;
        sums.iter().for_each(|sum| {
            assert_eq!(sum.data_points.len(), 2); // Expecting 1 time-series.
            assert!(sum.is_monotonic, "Counter should produce monotonic.");
            assert_eq!(sum.temporality, temporality);

            if temporality == Temporality::Delta {
                sum_zero_attributes += sum.data_points[0].value;
                sum_key1_value1 += sum.data_points[1].value;
            } else {
                sum_zero_attributes = sum.data_points[0].value;
                sum_key1_value1 = sum.data_points[1].value;
            };
        });

        assert_eq!(sum_zero_attributes, 10);
        assert_eq!(sum_key1_value1, 50); // Each of the 10 update threads record measurements summing up to 5.
    }

    fn counter_f64_multithreaded_aggregation_helper(temporality: Temporality) {
        // Arrange
        let mut test_context = TestContext::new(temporality);
        let counter = Arc::new(test_context.meter().f64_counter("test_counter").build());

        for i in 0..10 {
            thread::scope(|s| {
                s.spawn(|| {
                    counter.add(1.23, &[]);

                    counter.add(1.23, &[KeyValue::new("key1", "value1")]);
                    counter.add(1.23, &[KeyValue::new("key1", "value1")]);
                    counter.add(1.23, &[KeyValue::new("key1", "value1")]);

                    // Test concurrent collection by forcing half of the update threads to `force_flush` metrics and sleep for some time.
                    if i % 2 == 0 {
                        test_context.flush_metrics();
                        thread::sleep(Duration::from_millis(i)); // Make each thread sleep for some time duration for better testing
                    }

                    counter.add(1.23, &[KeyValue::new("key1", "value1")]);
                    counter.add(1.23, &[KeyValue::new("key1", "value1")]);
                });
            });
        }

        test_context.flush_metrics();

        // Assert
        // We invoke `test_context.flush_metrics()` six times.
        let sums =
            test_context.get_from_multiple_aggregations::<data::Sum<f64>>("test_counter", None, 6);

        let mut sum_zero_attributes = 0.0;
        let mut sum_key1_value1 = 0.0;
        sums.iter().for_each(|sum| {
            assert_eq!(sum.data_points.len(), 2); // Expecting 1 time-series.
            assert!(sum.is_monotonic, "Counter should produce monotonic.");
            assert_eq!(sum.temporality, temporality);

            if temporality == Temporality::Delta {
                sum_zero_attributes += sum.data_points[0].value;
                sum_key1_value1 += sum.data_points[1].value;
            } else {
                sum_zero_attributes = sum.data_points[0].value;
                sum_key1_value1 = sum.data_points[1].value;
            };
        });

        assert!(f64::abs(12.3 - sum_zero_attributes) < 0.0001);
        assert!(f64::abs(61.5 - sum_key1_value1) < 0.0001); // Each of the 10 update threads record measurements 5 times = 10 * 5 * 1.23 = 61.5
    }

    fn histogram_multithreaded_aggregation_helper(temporality: Temporality) {
        // Arrange
        let mut test_context = TestContext::new(temporality);
        let histogram = Arc::new(test_context.meter().u64_histogram("test_histogram").build());

        for i in 0..10 {
            thread::scope(|s| {
                s.spawn(|| {
                    histogram.record(1, &[]);
                    histogram.record(4, &[]);

                    histogram.record(5, &[KeyValue::new("key1", "value1")]);
                    histogram.record(7, &[KeyValue::new("key1", "value1")]);
                    histogram.record(18, &[KeyValue::new("key1", "value1")]);

                    // Test concurrent collection by forcing half of the update threads to `force_flush` metrics and sleep for some time.
                    if i % 2 == 0 {
                        test_context.flush_metrics();
                        thread::sleep(Duration::from_millis(i)); // Make each thread sleep for some time duration for better testing
                    }

                    histogram.record(35, &[KeyValue::new("key1", "value1")]);
                    histogram.record(35, &[KeyValue::new("key1", "value1")]);
                });
            });
        }

        test_context.flush_metrics();

        // Assert
        // We invoke `test_context.flush_metrics()` six times.
        let histograms = test_context.get_from_multiple_aggregations::<data::Histogram<u64>>(
            "test_histogram",
            None,
            6,
        );

        let (
            mut sum_zero_attributes,
            mut count_zero_attributes,
            mut min_zero_attributes,
            mut max_zero_attributes,
        ) = (0, 0, u64::MAX, u64::MIN);
        let (mut sum_key1_value1, mut count_key1_value1, mut min_key1_value1, mut max_key1_value1) =
            (0, 0, u64::MAX, u64::MIN);

        let mut bucket_counts_zero_attributes = vec![0; 16]; // There are 16 buckets for the default configuration
        let mut bucket_counts_key1_value1 = vec![0; 16];

        histograms.iter().for_each(|histogram| {
            assert_eq!(histogram.data_points.len(), 2); // Expecting 1 time-series.
            assert_eq!(histogram.temporality, temporality);

            let data_point_zero_attributes =
                find_histogram_datapoint_with_no_attributes(&histogram.data_points).unwrap();
            let data_point_key1_value1 =
                find_histogram_datapoint_with_key_value(&histogram.data_points, "key1", "value1")
                    .unwrap();

            if temporality == Temporality::Delta {
                sum_zero_attributes += data_point_zero_attributes.sum;
                sum_key1_value1 += data_point_key1_value1.sum;

                count_zero_attributes += data_point_zero_attributes.count;
                count_key1_value1 += data_point_key1_value1.count;

                min_zero_attributes =
                    min(min_zero_attributes, data_point_zero_attributes.min.unwrap());
                min_key1_value1 = min(min_key1_value1, data_point_key1_value1.min.unwrap());

                max_zero_attributes =
                    max(max_zero_attributes, data_point_zero_attributes.max.unwrap());
                max_key1_value1 = max(max_key1_value1, data_point_key1_value1.max.unwrap());

                assert_eq!(data_point_zero_attributes.bucket_counts.len(), 16);
                assert_eq!(data_point_key1_value1.bucket_counts.len(), 16);

                for (i, _) in data_point_zero_attributes.bucket_counts.iter().enumerate() {
                    bucket_counts_zero_attributes[i] += data_point_zero_attributes.bucket_counts[i];
                }

                for (i, _) in data_point_key1_value1.bucket_counts.iter().enumerate() {
                    bucket_counts_key1_value1[i] += data_point_key1_value1.bucket_counts[i];
                }
            } else {
                sum_zero_attributes = data_point_zero_attributes.sum;
                sum_key1_value1 = data_point_key1_value1.sum;

                count_zero_attributes = data_point_zero_attributes.count;
                count_key1_value1 = data_point_key1_value1.count;

                min_zero_attributes = data_point_zero_attributes.min.unwrap();
                min_key1_value1 = data_point_key1_value1.min.unwrap();

                max_zero_attributes = data_point_zero_attributes.max.unwrap();
                max_key1_value1 = data_point_key1_value1.max.unwrap();

                assert_eq!(data_point_zero_attributes.bucket_counts.len(), 16);
                assert_eq!(data_point_key1_value1.bucket_counts.len(), 16);

                bucket_counts_zero_attributes.clone_from(&data_point_zero_attributes.bucket_counts);
                bucket_counts_key1_value1.clone_from(&data_point_key1_value1.bucket_counts);
            };
        });

        // Default buckets:
        // (-∞, 0], (0, 5.0], (5.0, 10.0], (10.0, 25.0], (25.0, 50.0], (50.0, 75.0], (75.0, 100.0], (100.0, 250.0], (250.0, 500.0],
        // (500.0, 750.0], (750.0, 1000.0], (1000.0, 2500.0], (2500.0, 5000.0], (5000.0, 7500.0], (7500.0, 10000.0], (10000.0, +∞).

        assert_eq!(count_zero_attributes, 20); // Each of the 10 update threads record two measurements.
        assert_eq!(sum_zero_attributes, 50); // Each of the 10 update threads record measurements summing up to 5.
        assert_eq!(min_zero_attributes, 1);
        assert_eq!(max_zero_attributes, 4);

        for (i, count) in bucket_counts_zero_attributes.iter().enumerate() {
            match i {
                1 => assert_eq!(*count, 20), // For each of the 10 update threads, both the recorded values 1 and 4 fall under the bucket (0, 5].
                _ => assert_eq!(*count, 0),
            }
        }

        assert_eq!(count_key1_value1, 50); // Each of the 10 update threads record 5 measurements.
        assert_eq!(sum_key1_value1, 1000); // Each of the 10 update threads record measurements summing up to 100 (5 + 7 + 18 + 35 + 35).
        assert_eq!(min_key1_value1, 5);
        assert_eq!(max_key1_value1, 35);

        for (i, count) in bucket_counts_key1_value1.iter().enumerate() {
            match i {
                1 => assert_eq!(*count, 10), // For each of the 10 update threads, the recorded value 5 falls under the bucket (0, 5].
                2 => assert_eq!(*count, 10), // For each of the 10 update threads, the recorded value 7 falls under the bucket (5, 10].
                3 => assert_eq!(*count, 10), // For each of the 10 update threads, the recorded value 18 falls under the bucket (10, 25].
                4 => assert_eq!(*count, 20), // For each of the 10 update threads, the recorded value 35 (recorded twice) falls under the bucket (25, 50].
                _ => assert_eq!(*count, 0),
            }
        }
    }

    fn histogram_f64_multithreaded_aggregation_helper(temporality: Temporality) {
        // Arrange
        let mut test_context = TestContext::new(temporality);
        let histogram = Arc::new(test_context.meter().f64_histogram("test_histogram").build());

        for i in 0..10 {
            thread::scope(|s| {
                s.spawn(|| {
                    histogram.record(1.5, &[]);
                    histogram.record(4.6, &[]);

                    histogram.record(5.0, &[KeyValue::new("key1", "value1")]);
                    histogram.record(7.3, &[KeyValue::new("key1", "value1")]);
                    histogram.record(18.1, &[KeyValue::new("key1", "value1")]);

                    // Test concurrent collection by forcing half of the update threads to `force_flush` metrics and sleep for some time.
                    if i % 2 == 0 {
                        test_context.flush_metrics();
                        thread::sleep(Duration::from_millis(i)); // Make each thread sleep for some time duration for better testing
                    }

                    histogram.record(35.1, &[KeyValue::new("key1", "value1")]);
                    histogram.record(35.1, &[KeyValue::new("key1", "value1")]);
                });
            });
        }

        test_context.flush_metrics();

        // Assert
        // We invoke `test_context.flush_metrics()` six times.
        let histograms = test_context.get_from_multiple_aggregations::<data::Histogram<f64>>(
            "test_histogram",
            None,
            6,
        );

        let (
            mut sum_zero_attributes,
            mut count_zero_attributes,
            mut min_zero_attributes,
            mut max_zero_attributes,
        ) = (0.0, 0, f64::MAX, f64::MIN);
        let (mut sum_key1_value1, mut count_key1_value1, mut min_key1_value1, mut max_key1_value1) =
            (0.0, 0, f64::MAX, f64::MIN);

        let mut bucket_counts_zero_attributes = vec![0; 16]; // There are 16 buckets for the default configuration
        let mut bucket_counts_key1_value1 = vec![0; 16];

        histograms.iter().for_each(|histogram| {
            assert_eq!(histogram.data_points.len(), 2); // Expecting 1 time-series.
            assert_eq!(histogram.temporality, temporality);

            let data_point_zero_attributes =
                find_histogram_datapoint_with_no_attributes(&histogram.data_points).unwrap();
            let data_point_key1_value1 =
                find_histogram_datapoint_with_key_value(&histogram.data_points, "key1", "value1")
                    .unwrap();

            if temporality == Temporality::Delta {
                sum_zero_attributes += data_point_zero_attributes.sum;
                sum_key1_value1 += data_point_key1_value1.sum;

                count_zero_attributes += data_point_zero_attributes.count;
                count_key1_value1 += data_point_key1_value1.count;

                min_zero_attributes =
                    min_zero_attributes.min(data_point_zero_attributes.min.unwrap());
                min_key1_value1 = min_key1_value1.min(data_point_key1_value1.min.unwrap());

                max_zero_attributes =
                    max_zero_attributes.max(data_point_zero_attributes.max.unwrap());
                max_key1_value1 = max_key1_value1.max(data_point_key1_value1.max.unwrap());

                assert_eq!(data_point_zero_attributes.bucket_counts.len(), 16);
                assert_eq!(data_point_key1_value1.bucket_counts.len(), 16);

                for (i, _) in data_point_zero_attributes.bucket_counts.iter().enumerate() {
                    bucket_counts_zero_attributes[i] += data_point_zero_attributes.bucket_counts[i];
                }

                for (i, _) in data_point_key1_value1.bucket_counts.iter().enumerate() {
                    bucket_counts_key1_value1[i] += data_point_key1_value1.bucket_counts[i];
                }
            } else {
                sum_zero_attributes = data_point_zero_attributes.sum;
                sum_key1_value1 = data_point_key1_value1.sum;

                count_zero_attributes = data_point_zero_attributes.count;
                count_key1_value1 = data_point_key1_value1.count;

                min_zero_attributes = data_point_zero_attributes.min.unwrap();
                min_key1_value1 = data_point_key1_value1.min.unwrap();

                max_zero_attributes = data_point_zero_attributes.max.unwrap();
                max_key1_value1 = data_point_key1_value1.max.unwrap();

                assert_eq!(data_point_zero_attributes.bucket_counts.len(), 16);
                assert_eq!(data_point_key1_value1.bucket_counts.len(), 16);

                bucket_counts_zero_attributes.clone_from(&data_point_zero_attributes.bucket_counts);
                bucket_counts_key1_value1.clone_from(&data_point_key1_value1.bucket_counts);
            };
        });

        // Default buckets:
        // (-∞, 0], (0, 5.0], (5.0, 10.0], (10.0, 25.0], (25.0, 50.0], (50.0, 75.0], (75.0, 100.0], (100.0, 250.0], (250.0, 500.0],
        // (500.0, 750.0], (750.0, 1000.0], (1000.0, 2500.0], (2500.0, 5000.0], (5000.0, 7500.0], (7500.0, 10000.0], (10000.0, +∞).

        assert_eq!(count_zero_attributes, 20); // Each of the 10 update threads record two measurements.
        assert!(f64::abs(61.0 - sum_zero_attributes) < 0.0001); // Each of the 10 update threads record measurements summing up to 6.1 (1.5 + 4.6)
        assert_eq!(min_zero_attributes, 1.5);
        assert_eq!(max_zero_attributes, 4.6);

        for (i, count) in bucket_counts_zero_attributes.iter().enumerate() {
            match i {
                1 => assert_eq!(*count, 20), // For each of the 10 update threads, both the recorded values 1.5 and 4.6 fall under the bucket (0, 5.0].
                _ => assert_eq!(*count, 0),
            }
        }

        assert_eq!(count_key1_value1, 50); // Each of the 10 update threads record 5 measurements.
        assert!(f64::abs(1006.0 - sum_key1_value1) < 0.0001); // Each of the 10 update threads record measurements summing up to 100.4 (5.0 + 7.3 + 18.1 + 35.1 + 35.1).
        assert_eq!(min_key1_value1, 5.0);
        assert_eq!(max_key1_value1, 35.1);

        for (i, count) in bucket_counts_key1_value1.iter().enumerate() {
            match i {
                1 => assert_eq!(*count, 10), // For each of the 10 update threads, the recorded value 5.0 falls under the bucket (0, 5.0].
                2 => assert_eq!(*count, 10), // For each of the 10 update threads, the recorded value 7.3 falls under the bucket (5.0, 10.0].
                3 => assert_eq!(*count, 10), // For each of the 10 update threads, the recorded value 18.1 falls under the bucket (10.0, 25.0].
                4 => assert_eq!(*count, 20), // For each of the 10 update threads, the recorded value 35.1 (recorded twice) falls under the bucket (25.0, 50.0].
                _ => assert_eq!(*count, 0),
            }
        }
    }

    fn histogram_aggregation_helper(temporality: Temporality) {
        // Arrange
        let mut test_context = TestContext::new(temporality);
        let histogram = test_context.meter().u64_histogram("my_histogram").build();

        // Act
        let mut rand = rngs::SmallRng::from_entropy();
        let values_kv1 = (0..50)
            .map(|_| rand.gen_range(0..100))
            .collect::<Vec<u64>>();
        for value in values_kv1.iter() {
            histogram.record(*value, &[KeyValue::new("key1", "value1")]);
        }

        let values_kv2 = (0..30)
            .map(|_| rand.gen_range(0..100))
            .collect::<Vec<u64>>();
        for value in values_kv2.iter() {
            histogram.record(*value, &[KeyValue::new("key1", "value2")]);
        }

        test_context.flush_metrics();

        // Assert
        let histogram_data =
            test_context.get_aggregation::<data::Histogram<u64>>("my_histogram", None);
        // Expecting 2 time-series.
        assert_eq!(histogram_data.data_points.len(), 2);
        if let Temporality::Cumulative = temporality {
            assert_eq!(
                histogram_data.temporality,
                Temporality::Cumulative,
                "Should produce cumulative"
            );
        } else {
            assert_eq!(
                histogram_data.temporality,
                Temporality::Delta,
                "Should produce delta"
            );
        }

        // find and validate key1=value2 datapoint
        let data_point1 =
            find_histogram_datapoint_with_key_value(&histogram_data.data_points, "key1", "value1")
                .expect("datapoint with key1=value1 expected");
        assert_eq!(data_point1.count, values_kv1.len() as u64);
        assert_eq!(data_point1.sum, values_kv1.iter().sum::<u64>());
        assert_eq!(data_point1.min.unwrap(), *values_kv1.iter().min().unwrap());
        assert_eq!(data_point1.max.unwrap(), *values_kv1.iter().max().unwrap());

        let data_point2 =
            find_histogram_datapoint_with_key_value(&histogram_data.data_points, "key1", "value2")
                .expect("datapoint with key1=value2 expected");
        assert_eq!(data_point2.count, values_kv2.len() as u64);
        assert_eq!(data_point2.sum, values_kv2.iter().sum::<u64>());
        assert_eq!(data_point2.min.unwrap(), *values_kv2.iter().min().unwrap());
        assert_eq!(data_point2.max.unwrap(), *values_kv2.iter().max().unwrap());

        // Reset and report more measurements
        test_context.reset_metrics();
        for value in values_kv1.iter() {
            histogram.record(*value, &[KeyValue::new("key1", "value1")]);
        }

        for value in values_kv2.iter() {
            histogram.record(*value, &[KeyValue::new("key1", "value2")]);
        }

        test_context.flush_metrics();

        let histogram_data =
            test_context.get_aggregation::<data::Histogram<u64>>("my_histogram", None);
        assert_eq!(histogram_data.data_points.len(), 2);
        let data_point1 =
            find_histogram_datapoint_with_key_value(&histogram_data.data_points, "key1", "value1")
                .expect("datapoint with key1=value1 expected");
        if temporality == Temporality::Cumulative {
            assert_eq!(data_point1.count, 2 * (values_kv1.len() as u64));
            assert_eq!(data_point1.sum, 2 * (values_kv1.iter().sum::<u64>()));
            assert_eq!(data_point1.min.unwrap(), *values_kv1.iter().min().unwrap());
            assert_eq!(data_point1.max.unwrap(), *values_kv1.iter().max().unwrap());
        } else {
            assert_eq!(data_point1.count, values_kv1.len() as u64);
            assert_eq!(data_point1.sum, values_kv1.iter().sum::<u64>());
            assert_eq!(data_point1.min.unwrap(), *values_kv1.iter().min().unwrap());
            assert_eq!(data_point1.max.unwrap(), *values_kv1.iter().max().unwrap());
        }

        let data_point1 =
            find_histogram_datapoint_with_key_value(&histogram_data.data_points, "key1", "value2")
                .expect("datapoint with key1=value1 expected");
        if temporality == Temporality::Cumulative {
            assert_eq!(data_point1.count, 2 * (values_kv2.len() as u64));
            assert_eq!(data_point1.sum, 2 * (values_kv2.iter().sum::<u64>()));
            assert_eq!(data_point1.min.unwrap(), *values_kv2.iter().min().unwrap());
            assert_eq!(data_point1.max.unwrap(), *values_kv2.iter().max().unwrap());
        } else {
            assert_eq!(data_point1.count, values_kv2.len() as u64);
            assert_eq!(data_point1.sum, values_kv2.iter().sum::<u64>());
            assert_eq!(data_point1.min.unwrap(), *values_kv2.iter().min().unwrap());
            assert_eq!(data_point1.max.unwrap(), *values_kv2.iter().max().unwrap());
        }
    }

    fn histogram_aggregation_with_custom_bounds_helper(temporality: Temporality) {
        let mut test_context = TestContext::new(temporality);
        let histogram = test_context
            .meter()
            .u64_histogram("test_histogram")
            .with_boundaries(vec![1.0, 2.5, 5.5])
            .build();
        histogram.record(1, &[KeyValue::new("key1", "value1")]);
        histogram.record(2, &[KeyValue::new("key1", "value1")]);
        histogram.record(3, &[KeyValue::new("key1", "value1")]);
        histogram.record(4, &[KeyValue::new("key1", "value1")]);
        histogram.record(5, &[KeyValue::new("key1", "value1")]);

        test_context.flush_metrics();

        // Assert
        let histogram_data =
            test_context.get_aggregation::<data::Histogram<u64>>("test_histogram", None);
        // Expecting 2 time-series.
        assert_eq!(histogram_data.data_points.len(), 1);
        if let Temporality::Cumulative = temporality {
            assert_eq!(
                histogram_data.temporality,
                Temporality::Cumulative,
                "Should produce cumulative"
            );
        } else {
            assert_eq!(
                histogram_data.temporality,
                Temporality::Delta,
                "Should produce delta"
            );
        }

        // find and validate key1=value1 datapoint
        let data_point =
            find_histogram_datapoint_with_key_value(&histogram_data.data_points, "key1", "value1")
                .expect("datapoint with key1=value1 expected");

        assert_eq!(data_point.count, 5);
        assert_eq!(data_point.sum, 15);

        // Check the bucket counts
        // -∞ to 1.0: 1
        // 1.0 to 2.5: 1
        // 2.5 to 5.5: 3
        // 5.5 to +∞: 0

        assert_eq!(vec![1.0, 2.5, 5.5], data_point.bounds);
        assert_eq!(vec![1, 1, 3, 0], data_point.bucket_counts);
    }
    fn gauge_aggregation_helper(temporality: Temporality) {
        // Arrange
        let mut test_context = TestContext::new(temporality);
        let gauge = test_context.meter().i64_gauge("my_gauge").build();

        // Act
        gauge.record(1, &[KeyValue::new("key1", "value1")]);
        gauge.record(2, &[KeyValue::new("key1", "value1")]);
        gauge.record(1, &[KeyValue::new("key1", "value1")]);
        gauge.record(3, &[KeyValue::new("key1", "value1")]);
        gauge.record(4, &[KeyValue::new("key1", "value1")]);

        gauge.record(11, &[KeyValue::new("key1", "value2")]);
        gauge.record(13, &[KeyValue::new("key1", "value2")]);
        gauge.record(6, &[KeyValue::new("key1", "value2")]);

        test_context.flush_metrics();

        // Assert
        let gauge_data_point = test_context.get_aggregation::<data::Gauge<i64>>("my_gauge", None);
        // Expecting 2 time-series.
        assert_eq!(gauge_data_point.data_points.len(), 2);

        // find and validate key1=value2 datapoint
        let data_point1 =
            find_datapoint_with_key_value(&gauge_data_point.data_points, "key1", "value1")
                .expect("datapoint with key1=value1 expected");
        assert_eq!(data_point1.value, 4);

        let data_point1 =
            find_datapoint_with_key_value(&gauge_data_point.data_points, "key1", "value2")
                .expect("datapoint with key1=value2 expected");
        assert_eq!(data_point1.value, 6);

        // Reset and report more measurements
        test_context.reset_metrics();
        gauge.record(1, &[KeyValue::new("key1", "value1")]);
        gauge.record(2, &[KeyValue::new("key1", "value1")]);
        gauge.record(11, &[KeyValue::new("key1", "value1")]);
        gauge.record(3, &[KeyValue::new("key1", "value1")]);
        gauge.record(41, &[KeyValue::new("key1", "value1")]);

        gauge.record(34, &[KeyValue::new("key1", "value2")]);
        gauge.record(12, &[KeyValue::new("key1", "value2")]);
        gauge.record(54, &[KeyValue::new("key1", "value2")]);

        test_context.flush_metrics();

        let gauge = test_context.get_aggregation::<data::Gauge<i64>>("my_gauge", None);
        assert_eq!(gauge.data_points.len(), 2);
        let data_point1 = find_datapoint_with_key_value(&gauge.data_points, "key1", "value1")
            .expect("datapoint with key1=value1 expected");
        assert_eq!(data_point1.value, 41);

        let data_point1 = find_datapoint_with_key_value(&gauge.data_points, "key1", "value2")
            .expect("datapoint with key1=value2 expected");
        assert_eq!(data_point1.value, 54);
    }

    fn observable_gauge_aggregation_helper(temporality: Temporality, use_empty_attributes: bool) {
        // Arrange
        let mut test_context = TestContext::new(temporality);
        let _observable_gauge = test_context
            .meter()
            .i64_observable_gauge("test_observable_gauge")
            .with_callback(move |observer| {
                if use_empty_attributes {
                    observer.observe(1, &[]);
                }
                observer.observe(4, &[KeyValue::new("key1", "value1")]);
                observer.observe(5, &[KeyValue::new("key2", "value2")]);
            })
            .build();

        test_context.flush_metrics();

        // Assert
        let gauge = test_context.get_aggregation::<data::Gauge<i64>>("test_observable_gauge", None);
        // Expecting 2 time-series.
        let expected_time_series_count = if use_empty_attributes { 3 } else { 2 };
        assert_eq!(gauge.data_points.len(), expected_time_series_count);

        if use_empty_attributes {
            // find and validate zero attribute datapoint
            let zero_attribute_datapoint = find_datapoint_with_no_attributes(&gauge.data_points)
                .expect("datapoint with no attributes expected");
            assert_eq!(zero_attribute_datapoint.value, 1);
        }

        // find and validate key1=value1 datapoint
        let data_point1 = find_datapoint_with_key_value(&gauge.data_points, "key1", "value1")
            .expect("datapoint with key1=value1 expected");
        assert_eq!(data_point1.value, 4);

        // find and validate key2=value2 datapoint
        let data_point2 = find_datapoint_with_key_value(&gauge.data_points, "key2", "value2")
            .expect("datapoint with key2=value2 expected");
        assert_eq!(data_point2.value, 5);

        // Reset and report more measurements
        test_context.reset_metrics();

        test_context.flush_metrics();

        let gauge = test_context.get_aggregation::<data::Gauge<i64>>("test_observable_gauge", None);
        assert_eq!(gauge.data_points.len(), expected_time_series_count);

        if use_empty_attributes {
            let zero_attribute_datapoint = find_datapoint_with_no_attributes(&gauge.data_points)
                .expect("datapoint with no attributes expected");
            assert_eq!(zero_attribute_datapoint.value, 1);
        }

        let data_point1 = find_datapoint_with_key_value(&gauge.data_points, "key1", "value1")
            .expect("datapoint with key1=value1 expected");
        assert_eq!(data_point1.value, 4);

        let data_point2 = find_datapoint_with_key_value(&gauge.data_points, "key2", "value2")
            .expect("datapoint with key2=value2 expected");
        assert_eq!(data_point2.value, 5);
    }

    fn counter_aggregation_helper(temporality: Temporality) {
        // Arrange
        let mut test_context = TestContext::new(temporality);
        let counter = test_context.u64_counter("test", "my_counter", None);

        // Act
        counter.add(1, &[KeyValue::new("key1", "value1")]);
        counter.add(1, &[KeyValue::new("key1", "value1")]);
        counter.add(1, &[KeyValue::new("key1", "value1")]);
        counter.add(1, &[KeyValue::new("key1", "value1")]);
        counter.add(1, &[KeyValue::new("key1", "value1")]);

        counter.add(1, &[KeyValue::new("key1", "value2")]);
        counter.add(1, &[KeyValue::new("key1", "value2")]);
        counter.add(1, &[KeyValue::new("key1", "value2")]);

        test_context.flush_metrics();

        // Assert
        let sum = test_context.get_aggregation::<data::Sum<u64>>("my_counter", None);
        // Expecting 2 time-series.
        assert_eq!(sum.data_points.len(), 2);
        assert!(sum.is_monotonic, "Counter should produce monotonic.");
        if let Temporality::Cumulative = temporality {
            assert_eq!(
                sum.temporality,
                Temporality::Cumulative,
                "Should produce cumulative"
            );
        } else {
            assert_eq!(sum.temporality, Temporality::Delta, "Should produce delta");
        }

        // find and validate key1=value2 datapoint
        let data_point1 = find_datapoint_with_key_value(&sum.data_points, "key1", "value1")
            .expect("datapoint with key1=value1 expected");
        assert_eq!(data_point1.value, 5);

        let data_point1 = find_datapoint_with_key_value(&sum.data_points, "key1", "value2")
            .expect("datapoint with key1=value2 expected");
        assert_eq!(data_point1.value, 3);

        // Reset and report more measurements
        test_context.reset_metrics();
        counter.add(1, &[KeyValue::new("key1", "value1")]);
        counter.add(1, &[KeyValue::new("key1", "value1")]);
        counter.add(1, &[KeyValue::new("key1", "value1")]);
        counter.add(1, &[KeyValue::new("key1", "value1")]);
        counter.add(1, &[KeyValue::new("key1", "value1")]);

        counter.add(1, &[KeyValue::new("key1", "value2")]);
        counter.add(1, &[KeyValue::new("key1", "value2")]);
        counter.add(1, &[KeyValue::new("key1", "value2")]);

        test_context.flush_metrics();

        let sum = test_context.get_aggregation::<data::Sum<u64>>("my_counter", None);
        assert_eq!(sum.data_points.len(), 2);
        let data_point1 = find_datapoint_with_key_value(&sum.data_points, "key1", "value1")
            .expect("datapoint with key1=value1 expected");
        if temporality == Temporality::Cumulative {
            assert_eq!(data_point1.value, 10);
        } else {
            assert_eq!(data_point1.value, 5);
        }

        let data_point1 = find_datapoint_with_key_value(&sum.data_points, "key1", "value2")
            .expect("datapoint with key1=value2 expected");
        if temporality == Temporality::Cumulative {
            assert_eq!(data_point1.value, 6);
        } else {
            assert_eq!(data_point1.value, 3);
        }
    }

    fn counter_aggregation_overflow_helper(temporality: Temporality) {
        // Arrange
        let mut test_context = TestContext::new(temporality);
        let counter = test_context.u64_counter("test", "my_counter", None);

        // Act
        // Record measurements with A:0, A:1,.......A:1999, which just fits in the 2000 limit
        for v in 0..2000 {
            counter.add(100, &[KeyValue::new("A", v.to_string())]);
        }

        // Empty attributes is specially treated and does not count towards the limit.
        counter.add(3, &[]);
        counter.add(3, &[]);

        // All of the below will now go into overflow.
        counter.add(100, &[KeyValue::new("A", "foo")]);
        counter.add(100, &[KeyValue::new("A", "another")]);
        counter.add(100, &[KeyValue::new("A", "yet_another")]);
        test_context.flush_metrics();

        let sum = test_context.get_aggregation::<data::Sum<u64>>("my_counter", None);

        // Expecting 2002 metric points. (2000 + 1 overflow + Empty attributes)
        assert_eq!(sum.data_points.len(), 2002);

        let data_point =
            find_datapoint_with_key_value(&sum.data_points, "otel.metric.overflow", "true")
                .expect("overflow point expected");
        assert_eq!(data_point.value, 300);

        // let empty_attrs_data_point = &sum.data_points[0];
        let empty_attrs_data_point = find_datapoint_with_no_attributes(&sum.data_points)
            .expect("Empty attributes point expected");
        assert!(
            empty_attrs_data_point.attributes.is_empty(),
            "Non-empty attribute set"
        );
        assert_eq!(
            empty_attrs_data_point.value, 6,
            "Empty attributes value should be 3+3=6"
        );
    }

    fn counter_aggregation_attribute_order_helper(temporality: Temporality, start_sorted: bool) {
        // Arrange
        let mut test_context = TestContext::new(temporality);
        let counter = test_context.u64_counter("test", "my_counter", None);

        // Act
        // Add the same set of attributes in different order. (they are expected
        // to be treated as same attributes)
        // start with sorted order
        if start_sorted {
            counter.add(
                1,
                &[
                    KeyValue::new("A", "a"),
                    KeyValue::new("B", "b"),
                    KeyValue::new("C", "c"),
                ],
            );
        } else {
            counter.add(
                1,
                &[
                    KeyValue::new("A", "a"),
                    KeyValue::new("C", "c"),
                    KeyValue::new("B", "b"),
                ],
            );
        }

        counter.add(
            1,
            &[
                KeyValue::new("A", "a"),
                KeyValue::new("C", "c"),
                KeyValue::new("B", "b"),
            ],
        );
        counter.add(
            1,
            &[
                KeyValue::new("B", "b"),
                KeyValue::new("A", "a"),
                KeyValue::new("C", "c"),
            ],
        );
        counter.add(
            1,
            &[
                KeyValue::new("B", "b"),
                KeyValue::new("C", "c"),
                KeyValue::new("A", "a"),
            ],
        );
        counter.add(
            1,
            &[
                KeyValue::new("C", "c"),
                KeyValue::new("B", "b"),
                KeyValue::new("A", "a"),
            ],
        );
        counter.add(
            1,
            &[
                KeyValue::new("C", "c"),
                KeyValue::new("A", "a"),
                KeyValue::new("B", "b"),
            ],
        );
        test_context.flush_metrics();

        let sum = test_context.get_aggregation::<data::Sum<u64>>("my_counter", None);

        // Expecting 1 time-series.
        assert_eq!(sum.data_points.len(), 1);

        // validate the sole datapoint
        let data_point1 = &sum.data_points[0];
        assert_eq!(data_point1.value, 6);
    }

    fn updown_counter_aggregation_helper(temporality: Temporality) {
        // Arrange
        let mut test_context = TestContext::new(temporality);
        let counter = test_context.i64_up_down_counter("test", "my_updown_counter", None);

        // Act
        counter.add(10, &[KeyValue::new("key1", "value1")]);
        counter.add(-1, &[KeyValue::new("key1", "value1")]);
        counter.add(-5, &[KeyValue::new("key1", "value1")]);
        counter.add(0, &[KeyValue::new("key1", "value1")]);
        counter.add(1, &[KeyValue::new("key1", "value1")]);

        counter.add(10, &[KeyValue::new("key1", "value2")]);
        counter.add(0, &[KeyValue::new("key1", "value2")]);
        counter.add(-3, &[KeyValue::new("key1", "value2")]);

        test_context.flush_metrics();

        // Assert
        let sum = test_context.get_aggregation::<data::Sum<i64>>("my_updown_counter", None);
        // Expecting 2 time-series.
        assert_eq!(sum.data_points.len(), 2);
        assert!(
            !sum.is_monotonic,
            "UpDownCounter should produce non-monotonic."
        );
        assert_eq!(
            sum.temporality,
            Temporality::Cumulative,
            "Should produce Cumulative for UpDownCounter"
        );

        // find and validate key1=value2 datapoint
        let data_point1 = find_datapoint_with_key_value(&sum.data_points, "key1", "value1")
            .expect("datapoint with key1=value1 expected");
        assert_eq!(data_point1.value, 5);

        let data_point1 = find_datapoint_with_key_value(&sum.data_points, "key1", "value2")
            .expect("datapoint with key1=value2 expected");
        assert_eq!(data_point1.value, 7);

        // Reset and report more measurements
        test_context.reset_metrics();
        counter.add(10, &[KeyValue::new("key1", "value1")]);
        counter.add(-1, &[KeyValue::new("key1", "value1")]);
        counter.add(-5, &[KeyValue::new("key1", "value1")]);
        counter.add(0, &[KeyValue::new("key1", "value1")]);
        counter.add(1, &[KeyValue::new("key1", "value1")]);

        counter.add(10, &[KeyValue::new("key1", "value2")]);
        counter.add(0, &[KeyValue::new("key1", "value2")]);
        counter.add(-3, &[KeyValue::new("key1", "value2")]);

        test_context.flush_metrics();

        let sum = test_context.get_aggregation::<data::Sum<i64>>("my_updown_counter", None);
        assert_eq!(sum.data_points.len(), 2);
        let data_point1 = find_datapoint_with_key_value(&sum.data_points, "key1", "value1")
            .expect("datapoint with key1=value1 expected");
        assert_eq!(data_point1.value, 10);

        let data_point1 = find_datapoint_with_key_value(&sum.data_points, "key1", "value2")
            .expect("datapoint with key1=value2 expected");
        assert_eq!(data_point1.value, 14);
    }

    fn find_datapoint_with_key_value<'a, T>(
        data_points: &'a [DataPoint<T>],
        key: &str,
        value: &str,
    ) -> Option<&'a DataPoint<T>> {
        data_points.iter().find(|&datapoint| {
            datapoint
                .attributes
                .iter()
                .any(|kv| kv.key.as_str() == key && kv.value.as_str() == value)
        })
    }

    fn find_datapoint_with_no_attributes<T>(data_points: &[DataPoint<T>]) -> Option<&DataPoint<T>> {
        data_points
            .iter()
            .find(|&datapoint| datapoint.attributes.is_empty())
    }

    fn find_histogram_datapoint_with_key_value<'a, T>(
        data_points: &'a [HistogramDataPoint<T>],
        key: &str,
        value: &str,
    ) -> Option<&'a HistogramDataPoint<T>> {
        data_points.iter().find(|&datapoint| {
            datapoint
                .attributes
                .iter()
                .any(|kv| kv.key.as_str() == key && kv.value.as_str() == value)
        })
    }

    fn find_histogram_datapoint_with_no_attributes<T>(
        data_points: &[HistogramDataPoint<T>],
    ) -> Option<&HistogramDataPoint<T>> {
        data_points
            .iter()
            .find(|&datapoint| datapoint.attributes.is_empty())
    }

    fn find_scope_metric<'a>(
        metrics: &'a [ScopeMetrics],
        name: &'a str,
    ) -> Option<&'a ScopeMetrics> {
        metrics
            .iter()
            .find(|&scope_metric| scope_metric.scope.name() == name)
    }

    struct TestContext {
        exporter: InMemoryMetricExporter,
        meter_provider: SdkMeterProvider,

        // Saving this on the test context for lifetime simplicity
        resource_metrics: Vec<ResourceMetrics>,
    }

    impl TestContext {
        fn new(temporality: Temporality) -> Self {
            let exporter = InMemoryMetricExporterBuilder::new().with_temporality(temporality);

            let exporter = exporter.build();
            let reader = PeriodicReader::builder(exporter.clone(), runtime::Tokio).build();
            let meter_provider = SdkMeterProvider::builder().with_reader(reader).build();

            TestContext {
                exporter,
                meter_provider,
                resource_metrics: vec![],
            }
        }

        fn u64_counter(
            &self,
            meter_name: &'static str,
            counter_name: &'static str,
            unit: Option<&'static str>,
        ) -> Counter<u64> {
            let meter = self.meter_provider.meter(meter_name);
            let mut counter_builder = meter.u64_counter(counter_name);
            if let Some(unit_name) = unit {
                counter_builder = counter_builder.with_unit(unit_name);
            }
            counter_builder.build()
        }

        fn i64_up_down_counter(
            &self,
            meter_name: &'static str,
            counter_name: &'static str,
            unit: Option<&'static str>,
        ) -> UpDownCounter<i64> {
            let meter = self.meter_provider.meter(meter_name);
            let mut updown_counter_builder = meter.i64_up_down_counter(counter_name);
            if let Some(unit_name) = unit {
                updown_counter_builder = updown_counter_builder.with_unit(unit_name);
            }
            updown_counter_builder.build()
        }

        fn meter(&self) -> Meter {
            self.meter_provider.meter("test")
        }

        fn flush_metrics(&self) {
            self.meter_provider.force_flush().unwrap();
        }

        fn reset_metrics(&self) {
            self.exporter.reset();
        }

        fn check_no_metrics(&self) {
            let resource_metrics = self
                .exporter
                .get_finished_metrics()
                .expect("metrics expected to be exported"); // TODO: Need to fix InMemoryMetricExporter to return None.

            assert!(resource_metrics.is_empty(), "no metrics should be exported");
        }

        fn get_aggregation<T: data::Aggregation>(
            &mut self,
            counter_name: &str,
            unit_name: Option<&str>,
        ) -> &T {
            self.resource_metrics = self
                .exporter
                .get_finished_metrics()
                .expect("metrics expected to be exported");

            assert!(
                !self.resource_metrics.is_empty(),
                "no metrics were exported"
            );

            assert!(
                self.resource_metrics.len() == 1,
                "Expected single resource metrics."
            );
            let resource_metric = self
                .resource_metrics
                .first()
                .expect("This should contain exactly one resource metric, as validated above.");

            assert!(
                !resource_metric.scope_metrics.is_empty(),
                "No scope metrics in latest export"
            );
            assert!(!resource_metric.scope_metrics[0].metrics.is_empty());

            let metric = &resource_metric.scope_metrics[0].metrics[0];
            assert_eq!(metric.name, counter_name);
            if let Some(expected_unit) = unit_name {
                assert_eq!(metric.unit, expected_unit);
            }

            metric
                .data
                .as_any()
                .downcast_ref::<T>()
                .expect("Failed to cast aggregation to expected type")
        }

        fn get_from_multiple_aggregations<T: data::Aggregation>(
            &mut self,
            counter_name: &str,
            unit_name: Option<&str>,
            invocation_count: usize,
        ) -> Vec<&T> {
            self.resource_metrics = self
                .exporter
                .get_finished_metrics()
                .expect("metrics expected to be exported");

            assert!(
                !self.resource_metrics.is_empty(),
                "no metrics were exported"
            );

            assert_eq!(
                self.resource_metrics.len(),
                invocation_count,
                "Expected collect to be called {} times",
                invocation_count
            );

            let result = self
                .resource_metrics
                .iter()
                .map(|resource_metric| {
                    assert!(
                        !resource_metric.scope_metrics.is_empty(),
                        "An export with no scope metrics occurred"
                    );

                    assert!(!resource_metric.scope_metrics[0].metrics.is_empty());

                    let metric = &resource_metric.scope_metrics[0].metrics[0];
                    assert_eq!(metric.name, counter_name);

                    if let Some(expected_unit) = unit_name {
                        assert_eq!(metric.unit, expected_unit);
                    }

                    let aggregation = metric
                        .data
                        .as_any()
                        .downcast_ref::<T>()
                        .expect("Failed to cast aggregation to expected type");
                    aggregation
                })
                .collect::<Vec<_>>();

            result
        }
    }
}