1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
// Copyright (c) 2024 John Millikin <john@john-millikin.com>
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
// REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
// AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
// INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
// LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
// OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
// PERFORMANCE OF THIS SOFTWARE.
//
// SPDX-License-Identifier: 0BSD
//! # vu128: Efficient variable-length integers
//!
//! `vu128` is a variable-length integer encoding, with smaller values being
//! encoded using fewer bytes. Integer sizes up to 128 bits are supported.
//! The compression ratio of `vu128` equals or exceeds the widely used [VLQ]
//! and [LEB128] encodings, and is faster on modern pipelined architectures.
//!
//! [VLQ]: https://en.wikipedia.org/wiki/Variable-length_quantity
//! [LEB128]: https://en.wikipedia.org/wiki/LEB128
//!
//! # Encoding details
//!
//! Values in the range `[0, 2^7)` are encoded as a single byte with
//! the same bits as the original value.
//!
//! Values in the range `[2^7, 2^28)` are encoded as a unary length prefix,
//! followed by `(length*7)` bits, in little-endian order. This is conceptually
//! similar to LEB128, but the continuation bits are placed in upper half
//! of the initial byte. This arrangement is also known as a "prefix varint".
//!
//! ```text
//! MSB ------------------ LSB
//!
//! 10101011110011011110 Input value (0xABCDE)
//! 0101010 1111001 1011110 Zero-padded to a multiple of 7 bits
//! 01010101 11100110 ___11110 Grouped into octets, with 3 continuation bits
//! 01010101 11100110 11011110 Continuation bits `110` added
//! 0x55 0xE6 0xDE In hexadecimal
//!
//! [0xDE, 0xE6, 0x55] Encoded output (order is little-endian)
//! ```
//!
//! Values in the range `[2^28, 2^128)` are encoded as a binary length prefix,
//! followed by payload bytes, in little-endian order. To differentiate this
//! format from the format of smaller values, the top 4 bits of the first byte
//! are set. The length prefix value is the number of payload bytes minus one;
//! equivalently it is the total length of the encoded value minus two.
//!
//! ```text
//! MSB ------------------------------------ LSB
//!
//! 10010001101000101011001111000 Input value (0x12345678)
//! 00010010 00110100 01010110 01111000 Zero-padded to a multiple of 8 bits
//! 00010010 00110100 01010110 01111000 11110011 Prefix byte is `0xF0 | (4 - 1)`
//! 0x12 0x34 0x56 0x78 0xF3 In hexadecimal
//!
//! [0xF3, 0x78, 0x56, 0x34, 0x12] Encoded output (order is little-endian)
//! ```
//!
//! # Handling of over-long encodings
//!
//! The `vu128` format permits over-long encodings, which encode a value using
//! a byte sequence that is unnecessarily long:
//!
//! * Zero-padding beyond that required to reach a multiple of 7 or 8 bits.
//! * Using a length prefix byte for a value in the range `[0, 2^7)`.
//! * Using a binary length prefix byte for a value in the range `[0, 2^28)`.
//!
//! The `encode_*` functions in this module will not generate such over-long
//! encodings, but the `decode_*` functions will accept them. This is intended
//! to allow `vu128` values to be placed in a buffer before the value to be
//! written is known. Applications that require a single canonical encoding for
//! any given value should perform appropriate checking in their own code.
//!
//! # Signed integers and floating-point values
//!
//! Signed integers and IEEE-754 floating-point values may be encoded with
//! `vu128` by mapping them to unsigned integers. It is recommended that the
//! mapping functions be chosen so as to minimize the number of zeroes in the
//! higher-order bits, which enables better compression.
//!
//! This library includes helper functions that use Protocol Buffer's ["ZigZag"
//! encoding] for signed integers and reverse-endian layout for floating-point.
//!
//! ["ZigZag" encoding]: https://protobuf.dev/programming-guides/encoding/#signed-ints
#![no_std]
#![warn(clippy::must_use_candidate)]
#![warn(clippy::undocumented_unsafe_blocks)]
#![warn(missing_docs)]
use core::mem;
/// Returns the encoded length in a `vu128` prefix byte.
///
/// # Examples
///
/// ```
/// let mut buf = [0u8; 5];
/// let encoded_len = vu128::encode_u32(&mut buf, 12345);
/// assert_eq!(vu128::encoded_len(buf[0]), encoded_len);
/// ```
#[must_use]
pub const fn encoded_len(b: u8) -> usize {
if b < 0b10000000 {
return 1;
}
if b < 0b11000000 {
return 2;
}
if b < 0b11100000 {
return 3;
}
if b < 0b11110000 {
return 4;
}
((b & 0x0F) + 2) as usize
}
/// Encodes a `u32` into a buffer, returning the encoded length.
///
/// The contents of the buffer beyond the returned length are unspecified.
///
/// # Examples
///
/// ```
/// let mut buf = [0u8; 5];
/// let encoded_len = vu128::encode_u32(&mut buf, 12345);
/// assert_eq!(&buf[..encoded_len], &[0xB9, 0xC0]);
/// ```
#[inline]
#[must_use]
pub fn encode_u32(buf: &mut [u8; 5], value: u32) -> usize {
let mut x = value;
if x < 0x80 {
buf[0] = x as u8;
return 1;
}
if x < 0x10000000 {
if x < 0x00004000 {
x <<= 2;
buf[0] = 0x80 | ((x as u8) >> 2);
buf[1] = (x >> 8) as u8;
return 2;
}
if x < 0x00200000 {
x <<= 3;
buf[0] = 0xC0 | ((x as u8) >> 3);
buf[1] = (x >> 8) as u8;
buf[2] = (x >> 16) as u8;
return 3;
}
x <<= 4;
buf[0] = 0xE0 | ((x as u8) >> 4);
buf[1] = (x >> 8) as u8;
buf[2] = (x >> 16) as u8;
buf[3] = (x >> 24) as u8;
return 4;
}
// SAFETY: buf has a const length of `size_of::<u32>() + 1`.
unsafe {
ptr_from_mut::<[u8; mem::size_of::<u32>() + 1]>(buf)
.cast::<u8>()
.add(1)
.cast::<u32>()
.write_unaligned(x.to_le());
}
buf[0] = 0xF3;
5
}
/// Encodes a `u64` into a buffer, returning the encoded length.
///
/// The contents of the buffer beyond the returned length are unspecified.
///
/// # Examples
///
/// ```
/// let mut buf = [0u8; 9];
/// let encoded_len = vu128::encode_u64(&mut buf, 12345);
/// assert_eq!(&buf[..encoded_len], &[0xB9, 0xC0]);
/// ```
#[inline]
#[must_use]
pub fn encode_u64(buf: &mut [u8; 9], value: u64) -> usize {
let mut x = value;
if x < 0x80 {
buf[0] = x as u8;
return 1;
}
if x < 0x10000000 {
if x < 0x00004000 {
x <<= 2;
buf[0] = 0x80 | ((x as u8) >> 2);
buf[1] = (x >> 8) as u8;
return 2;
}
if x < 0x00200000 {
x <<= 3;
buf[0] = 0xC0 | ((x as u8) >> 3);
buf[1] = (x >> 8) as u8;
buf[2] = (x >> 16) as u8;
return 3;
}
x <<= 4;
buf[0] = 0xE0 | ((x as u8) >> 4);
buf[1] = (x >> 8) as u8;
buf[2] = (x >> 16) as u8;
buf[3] = (x >> 24) as u8;
return 4;
}
// SAFETY: buf has a const length of `size_of::<u64>() + 1`.
unsafe {
ptr_from_mut::<[u8; mem::size_of::<u64>() + 1]>(buf)
.cast::<u8>()
.add(1)
.cast::<u64>()
.write_unaligned(x.to_le());
}
const LEN_MASK: u8 = 0b111;
let len = ((x.leading_zeros() >> 3) as u8) ^ LEN_MASK;
buf[0] = 0xF0 | len;
(len + 2) as usize
}
/// Encodes a `u128` into a buffer, returning the encoded length.
///
/// The contents of the buffer beyond the returned length are unspecified.
///
/// # Examples
///
/// ```
/// let mut buf = [0u8; 17];
/// let encoded_len = vu128::encode_u128(&mut buf, 12345);
/// assert_eq!(&buf[..encoded_len], &[0xB9, 0xC0]);
/// ```
#[inline]
#[must_use]
pub fn encode_u128(buf: &mut [u8; 17], value: u128) -> usize {
if value < 0x80 {
buf[0] = value as u8;
return 1;
}
if value < 0x10000000 {
// SAFETY: A `[u8; 17]` can be safely truncated to a `[u8; 5]`.
let buf_u32 = unsafe {
&mut *(ptr_from_mut::<[u8; 17]>(buf).cast::<[u8; 5]>())
};
return encode_u32(buf_u32, value as u32);
}
// SAFETY: buf has a const length of `size_of::<u128>() + 1`.
unsafe {
ptr_from_mut::<[u8; mem::size_of::<u128>() + 1]>(buf)
.cast::<u8>()
.add(1)
.cast::<u128>()
.write_unaligned(value.to_le());
}
const LEN_MASK: u8 = 0b1111;
let len = ((value.leading_zeros() >> 3) as u8) ^ LEN_MASK;
buf[0] = 0xF0 | len;
(len + 2) as usize
}
/// Decodes a `u32` from a buffer, returning the value and encoded length.
///
/// # Examples
///
/// ```
/// let mut buf = [0u8; 5];
/// let encoded_len = vu128::encode_u32(&mut buf, 123);
/// assert_eq!(vu128::decode_u32(&buf), (123, encoded_len));
/// ```
#[inline]
#[must_use]
pub fn decode_u32(buf: &[u8; 5]) -> (u32, usize) {
let buf0 = buf[0] as u32;
if (buf0 & 0x80) == 0 {
return (buf0, 1);
}
if (buf0 & 0b01000000) == 0 {
let low = (buf0 as u8) & 0x3F;
let value = ((buf[1] as u32) << 6) | (low as u32);
return (value, 2);
}
if buf0 >= 0xF0 {
let len = ((buf0 as u8) & 0x0F) + 2;
let value = ((buf[4] as u32) << 24)
| ((buf[3] as u32) << 16)
| ((buf[2] as u32) << 8)
| (buf[1] as u32);
return (value, len as usize);
}
if (buf0 & 0b00100000) == 0 {
let low = (buf0 as u8) & 0x1F;
let value = ((buf[2] as u32) << 13)
| ((buf[1] as u32) << 5)
| (low as u32);
return (value, 3);
}
let value = ((buf[3] as u32) << 20)
| ((buf[2] as u32) << 12)
| ((buf[1] as u32) << 4)
| (buf0 & 0x0F);
(value, 4)
}
/// Decodes a `u64` from a buffer, returning the value and encoded length.
///
/// # Examples
///
/// ```
/// let mut buf = [0u8; 9];
/// let encoded_len = vu128::encode_u64(&mut buf, 123);
/// assert_eq!(vu128::decode_u64(&buf), (123, encoded_len));
/// ```
#[inline]
#[must_use]
pub fn decode_u64(buf: &[u8; 9]) -> (u64, usize) {
let buf0 = buf[0] as u64;
if (buf0 & 0x80) == 0 {
return (buf0, 1);
}
if buf0 < 0xF0 {
if (buf0 & 0b01000000) == 0 {
let low = (buf0 as u8) & 0b00111111;
let value = ((buf[1] as u32) << 6) | (low as u32);
return (value as u64, 2);
}
if (buf0 & 0b00100000) == 0 {
let low = (buf0 as u8) & 0b00011111;
let value = ((buf[2] as u32) << 13)
| ((buf[1] as u32) << 5)
| (low as u32);
return (value as u64, 3);
}
let value = ((buf[3] as u32) << 20)
| ((buf[2] as u32) << 12)
| ((buf[1] as u32) << 4)
| ((buf0 as u32) & 0b00001111);
return (value as u64, 4);
}
// SAFETY: buf has a const length of `size_of::<u64>() + 1`.
let value = u64::from_le(unsafe {
ptr_from_ref::<[u8; mem::size_of::<u64>() + 1]>(buf)
.cast::<u8>()
.add(1)
.cast::<u64>()
.read_unaligned()
});
const LEN_MASK: u8 = 0b111;
let len = buf[0] & 0x0F;
let mask_octets = (len & LEN_MASK) ^ LEN_MASK;
let mask = u64::MAX >> (mask_octets * 8);
(value & mask, (len + 2) as usize)
}
/// Decodes a `u128` from a buffer, returning the value and encoded length.
///
/// # Examples
///
/// ```
/// let mut buf = [0u8; 17];
/// let encoded_len = vu128::encode_u128(&mut buf, 123);
/// assert_eq!(vu128::decode_u128(&buf), (123, encoded_len));
/// ```
#[inline]
#[must_use]
pub fn decode_u128(buf: &[u8; 17]) -> (u128, usize) {
if (buf[0] & 0x80) == 0 {
return (buf[0] as u128, 1);
}
if buf[0] < 0xF0 {
// SAFETY: A `[u8; 17]` can be safely truncated to a `[u8; 5]`.
let buf_u32 = unsafe {
&*(ptr_from_ref::<[u8; 17]>(buf).cast::<[u8; 5]>())
};
let (value, len) = decode_u32(buf_u32);
return (value as u128, len);
}
// SAFETY: buf has a const length of `size_of::<u128>() + 1`.
let value = u128::from_le(unsafe {
ptr_from_ref::<[u8; mem::size_of::<u128>() + 1]>(buf)
.cast::<u8>()
.add(1)
.cast::<u128>()
.read_unaligned()
});
const LEN_MASK: u8 = 0b1111;
let len = buf[0] & 0x0F;
let mask_octets = (len & LEN_MASK) ^ LEN_MASK;
let mask = u128::MAX >> (mask_octets * 8);
(value & mask, (len + 2) as usize)
}
macro_rules! encode_iNN {
($(#[$docs:meta])* $name:ident ( $it:ident, $ut:ident, $encode_fn:ident ) ) => {
$(#[$docs])*
#[inline]
#[must_use]
pub fn $name(buf: &mut [u8; mem::size_of::<$ut>()+1], value: $it) -> usize {
const ZIGZAG_SHIFT: u8 = ($ut::BITS as u8) - 1;
let zigzag = ((value >> ZIGZAG_SHIFT) as $ut) ^ ((value << 1) as $ut);
$encode_fn(buf, zigzag)
}
};
}
macro_rules! decode_iNN {
($(#[$docs:meta])* $name:ident ( $it:ident, $ut:ident, $decode_fn:ident ) ) => {
$(#[$docs])*
#[inline]
#[must_use]
pub fn $name(buf: &[u8; mem::size_of::<$ut>()+1]) -> ($it, usize) {
let (zz, len) = $decode_fn(buf);
let value = ((zz >> 1) as $it) ^ (-((zz & 1) as $it));
(value, len)
}
};
}
encode_iNN! {
/// Encodes an `i32` into a buffer, returning the encoded length.
///
/// The contents of the buffer beyond the returned length are unspecified.
///
/// # Examples
///
/// ```
/// let mut buf = [0u8; 5];
/// let encoded_len = vu128::encode_i32(&mut buf, 123);
/// assert_eq!(&buf[..encoded_len], &[0xB6, 0x03]);
/// ```
encode_i32(i32, u32, encode_u32)
}
encode_iNN! {
/// Encodes an `i64` into a buffer, returning the encoded length.
///
/// The contents of the buffer beyond the returned length are unspecified.
///
/// # Examples
///
/// ```
/// let mut buf = [0u8; 9];
/// let encoded_len = vu128::encode_i64(&mut buf, 123);
/// assert_eq!(&buf[..encoded_len], &[0xB6, 0x03]);
/// ```
encode_i64(i64, u64, encode_u64)
}
encode_iNN! {
/// Encodes an `i128` into a buffer, returning the encoded length.
///
/// The contents of the buffer beyond the returned length are unspecified.
///
/// # Examples
///
/// ```
/// let mut buf = [0u8; 17];
/// let encoded_len = vu128::encode_i128(&mut buf, 123);
/// assert_eq!(&buf[..encoded_len], &[0xB6, 0x03]);
/// ```
encode_i128(i128, u128, encode_u128)
}
decode_iNN! {
/// Decodes an `i32` from a buffer, returning the value and encoded length.
///
/// # Examples
///
/// ```
/// let mut buf = [0u8; 5];
/// let encoded_len = vu128::encode_i32(&mut buf, 123);
/// assert_eq!(vu128::decode_i32(&buf), (123, encoded_len));
/// ```
decode_i32(i32, u32, decode_u32)
}
decode_iNN! {
/// Decodes an `i64` from a buffer, returning the value and encoded length.
///
/// # Examples
///
/// ```
/// let mut buf = [0u8; 9];
/// let encoded_len = vu128::encode_i64(&mut buf, 123);
/// assert_eq!(vu128::decode_i64(&buf), (123, encoded_len));
/// ```
decode_i64(i64, u64, decode_u64)
}
decode_iNN! {
/// Decodes an `i128` from a buffer, returning the value and encoded length.
///
/// # Examples
///
/// ```
/// let mut buf = [0u8; 17];
/// let encoded_len = vu128::encode_i128(&mut buf, 123);
/// assert_eq!(vu128::decode_i128(&buf), (123, encoded_len));
/// ```
decode_i128(i128, u128, decode_u128)
}
/// Encodes an `f32` into a buffer, returning the encoded length.
///
/// The contents of the buffer beyond the returned length are unspecified.
///
/// # Examples
///
/// ```
/// let mut buf = [0u8; 5];
/// let encoded_len = vu128::encode_f32(&mut buf, 2.5);
/// assert_eq!(&buf[..encoded_len], &[0x80, 0x81]);
/// ```
#[inline]
#[must_use]
pub fn encode_f32(buf: &mut [u8; 5], value: f32) -> usize {
encode_u32(buf, value.to_bits().swap_bytes())
}
/// Encodes an `f64` into a buffer, returning the encoded length.
///
/// The contents of the buffer beyond the returned length are unspecified.
///
/// # Examples
///
/// ```
/// let mut buf = [0u8; 9];
/// let encoded_len = vu128::encode_f64(&mut buf, 2.5);
/// assert_eq!(&buf[..encoded_len], &[0x80, 0x11]);
/// ```
#[inline]
#[must_use]
pub fn encode_f64(buf: &mut [u8; 9], value: f64) -> usize {
encode_u64(buf, value.to_bits().swap_bytes())
}
/// Decodes an `f32` from a buffer, returning the value and encoded length.
///
/// # Examples
///
/// ```
/// let mut buf = [0u8; 5];
/// let encoded_len = vu128::encode_f32(&mut buf, 2.5);
/// assert_eq!(vu128::decode_f32(&buf), (2.5, encoded_len));
/// ```
#[inline]
#[must_use]
pub fn decode_f32(buf: &[u8; 5]) -> (f32, usize) {
let (swapped, len) = decode_u32(buf);
(f32::from_bits(swapped.swap_bytes()), len)
}
/// Decodes an `f64` from a buffer, returning the value and encoded length.
///
/// # Examples
///
/// ```
/// let mut buf = [0u8; 9];
/// let encoded_len = vu128::encode_f64(&mut buf, 2.5);
/// assert_eq!(vu128::decode_f64(&buf), (2.5, encoded_len));
/// ```
#[inline]
#[must_use]
pub fn decode_f64(buf: &[u8; 9]) -> (f64, usize) {
let (swapped, len) = decode_u64(buf);
(f64::from_bits(swapped.swap_bytes()), len)
}
#[inline(always)]
const fn ptr_from_ref<T: ?Sized>(r: &T) -> *const T {
r
}
#[inline(always)]
fn ptr_from_mut<T: ?Sized>(r: &mut T) -> *mut T {
r
}