1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
//! I/O streams for wrapping `BufRead` types as encoders/decoders

use lzma_sys;
use std::io;
use std::io::prelude::*;

#[cfg(feature = "tokio")]
use futures::Poll;
#[cfg(feature = "tokio")]
use tokio_io::{AsyncRead, AsyncWrite};

use crate::stream::{Action, Check, Status, Stream};

/// An xz encoder, or compressor.
///
/// This structure implements a `BufRead` interface and will read uncompressed
/// data from an underlying stream and emit a stream of compressed data.
pub struct XzEncoder<R> {
    obj: R,
    data: Stream,
}

/// A xz decoder, or decompressor.
///
/// This structure implements a `BufRead` interface and takes a stream of
/// compressed data as input, providing the decompressed data when read from.
pub struct XzDecoder<R> {
    obj: R,
    data: Stream,
}

impl<R: BufRead> XzEncoder<R> {
    /// Creates a new encoder which will read uncompressed data from the given
    /// stream and emit the compressed stream.
    ///
    /// The `level` argument here is typically 0-9 with 6 being a good default.
    pub fn new(r: R, level: u32) -> XzEncoder<R> {
        let stream = Stream::new_easy_encoder(level, Check::Crc64).unwrap();
        XzEncoder::new_stream(r, stream)
    }

    /// Creates a new encoder with a custom `Stream`.
    ///
    /// The `Stream` can be pre-configured for multithreaded encoding, different
    /// compression options/tuning, etc.
    pub fn new_stream(r: R, stream: Stream) -> XzEncoder<R> {
        XzEncoder {
            obj: r,
            data: stream,
        }
    }
}

impl<R> XzEncoder<R> {
    /// Acquires a reference to the underlying stream
    pub fn get_ref(&self) -> &R {
        &self.obj
    }

    /// Acquires a mutable reference to the underlying stream
    ///
    /// Note that mutation of the stream may result in surprising results if
    /// this encoder is continued to be used.
    pub fn get_mut(&mut self) -> &mut R {
        &mut self.obj
    }

    /// Consumes this encoder, returning the underlying reader.
    pub fn into_inner(self) -> R {
        self.obj
    }

    /// Returns the number of bytes produced by the compressor
    /// (e.g. the number of bytes read from this stream)
    ///
    /// Note that, due to buffering, this only bears any relation to
    /// total_in() when the compressor chooses to flush its data
    /// (unfortunately, this won't happen in general at the end of the
    /// stream, because the compressor doesn't know if there's more data
    /// to come).  At that point, `total_out() / total_in()` would be
    /// the compression ratio.
    pub fn total_out(&self) -> u64 {
        self.data.total_out()
    }

    /// Returns the number of bytes consumed by the compressor
    /// (e.g. the number of bytes read from the underlying stream)
    pub fn total_in(&self) -> u64 {
        self.data.total_in()
    }
}

impl<R: BufRead> Read for XzEncoder<R> {
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        loop {
            let (read, consumed, eof, ret);
            {
                let input = self.obj.fill_buf()?;
                eof = input.is_empty();
                let before_out = self.data.total_out();
                let before_in = self.data.total_in();
                let action = if eof { Action::Finish } else { Action::Run };
                ret = self.data.process(input, buf, action);
                read = (self.data.total_out() - before_out) as usize;
                consumed = (self.data.total_in() - before_in) as usize;
            }
            self.obj.consume(consumed);

            ret.unwrap();

            // If we haven't ready any data and we haven't hit EOF yet, then we
            // need to keep asking for more data because if we return that 0
            // bytes of data have been read then it will be interpreted as EOF.
            if read == 0 && !eof && buf.len() > 0 {
                continue;
            }
            return Ok(read);
        }
    }
}

#[cfg(feature = "tokio")]
impl<R: AsyncRead + BufRead> AsyncRead for XzEncoder<R> {}

impl<W: Write> Write for XzEncoder<W> {
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        self.get_mut().write(buf)
    }

    fn flush(&mut self) -> io::Result<()> {
        self.get_mut().flush()
    }
}

#[cfg(feature = "tokio")]
impl<R: AsyncWrite> AsyncWrite for XzEncoder<R> {
    fn shutdown(&mut self) -> Poll<(), io::Error> {
        self.get_mut().shutdown()
    }
}

impl<R: BufRead> XzDecoder<R> {
    /// Creates a new decoder which will decompress data read from the given
    /// stream.
    pub fn new(r: R) -> XzDecoder<R> {
        let stream = Stream::new_stream_decoder(u64::max_value(), 0).unwrap();
        XzDecoder::new_stream(r, stream)
    }

    /// Creates a new decoder which will decompress data read from the given
    /// input. All the concatenated xz streams from input will be consumed.
    pub fn new_multi_decoder(r: R) -> XzDecoder<R> {
        let stream =
            Stream::new_auto_decoder(u64::max_value(), lzma_sys::LZMA_CONCATENATED).unwrap();
        XzDecoder::new_stream(r, stream)
    }

    /// Creates a new decoder with a custom `Stream`.
    ///
    /// The `Stream` can be pre-configured for various checks, different
    /// decompression options/tuning, etc.
    pub fn new_stream(r: R, stream: Stream) -> XzDecoder<R> {
        XzDecoder {
            obj: r,
            data: stream,
        }
    }
}

impl<R> XzDecoder<R> {
    /// Acquires a reference to the underlying stream
    pub fn get_ref(&self) -> &R {
        &self.obj
    }

    /// Acquires a mutable reference to the underlying stream
    ///
    /// Note that mutation of the stream may result in surprising results if
    /// this encoder is continued to be used.
    pub fn get_mut(&mut self) -> &mut R {
        &mut self.obj
    }

    /// Consumes this decoder, returning the underlying reader.
    pub fn into_inner(self) -> R {
        self.obj
    }

    /// Returns the number of bytes that the decompressor has consumed.
    ///
    /// Note that this will likely be smaller than what the decompressor
    /// actually read from the underlying stream due to buffering.
    pub fn total_in(&self) -> u64 {
        self.data.total_in()
    }

    /// Returns the number of bytes that the decompressor has produced.
    pub fn total_out(&self) -> u64 {
        self.data.total_out()
    }
}

impl<R: BufRead> Read for XzDecoder<R> {
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        loop {
            let (read, consumed, eof, ret);
            {
                let input = self.obj.fill_buf()?;
                eof = input.is_empty();
                let before_out = self.data.total_out();
                let before_in = self.data.total_in();
                ret = self
                    .data
                    .process(input, buf, if eof { Action::Finish } else { Action::Run });
                read = (self.data.total_out() - before_out) as usize;
                consumed = (self.data.total_in() - before_in) as usize;
            }
            self.obj.consume(consumed);

            let status = ret?;
            if read > 0 || eof || buf.len() == 0 {
                if read == 0 && status != Status::StreamEnd && buf.len() > 0 {
                    return Err(io::Error::new(
                        io::ErrorKind::UnexpectedEof,
                        "premature eof",
                    ));
                }
                return Ok(read);
            }
            if consumed == 0 {
                return Err(io::Error::new(
                    io::ErrorKind::InvalidData,
                    "corrupt xz stream",
                ));
            }
        }
    }
}

#[cfg(feature = "tokio")]
impl<R: AsyncRead + BufRead> AsyncRead for XzDecoder<R> {}

impl<W: Write> Write for XzDecoder<W> {
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        self.get_mut().write(buf)
    }

    fn flush(&mut self) -> io::Result<()> {
        self.get_mut().flush()
    }
}

#[cfg(feature = "tokio")]
impl<R: AsyncWrite> AsyncWrite for XzDecoder<R> {
    fn shutdown(&mut self) -> Poll<(), io::Error> {
        self.get_mut().shutdown()
    }
}

#[cfg(test)]
mod tests {
    use crate::bufread::{XzDecoder, XzEncoder};
    use std::io::Read;

    #[test]
    fn compressed_and_trailing_data() {
        // Make a vector with compressed data...
        let mut to_compress: Vec<u8> = Vec::new();
        const COMPRESSED_ORIG_SIZE: usize = 1024;
        for num in 0..COMPRESSED_ORIG_SIZE {
            to_compress.push(num as u8)
        }
        let mut encoder = XzEncoder::new(&to_compress[..], 6);

        let mut decoder_input = Vec::new();
        encoder.read_to_end(&mut decoder_input).unwrap();

        // ...plus additional unrelated trailing data
        const ADDITIONAL_SIZE: usize = 123;
        let mut additional_data = Vec::new();
        for num in 0..ADDITIONAL_SIZE {
            additional_data.push(((25 + num) % 256) as u8)
        }
        decoder_input.extend(&additional_data);

        // Decoder must be able to read the compressed xz stream, and keep the trailing data.
        let mut decoder_reader = &decoder_input[..];
        {
            let mut decoder = XzDecoder::new(&mut decoder_reader);
            let mut decompressed_data = vec![0u8; to_compress.len()];

            assert_eq!(
                decoder.read(&mut decompressed_data).unwrap(),
                COMPRESSED_ORIG_SIZE
            );
            assert_eq!(decompressed_data, &to_compress[..]);
        }

        let mut remaining_data = Vec::new();
        let nb_read = decoder_reader.read_to_end(&mut remaining_data).unwrap();
        assert_eq!(nb_read, ADDITIONAL_SIZE);
        assert_eq!(remaining_data, &additional_data[..]);
    }
}