1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
// Portions Copyright 2019 Red Hat, Inc.
//
// Portions Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
//
// Portions Copyright 2017 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE-BSD-3-Clause file.
//
// SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause
//! Define the `ByteValued` trait to mark that it is safe to instantiate the struct with random
//! data.
use std::io::{Read, Write};
use std::mem::size_of;
use std::result::Result;
use std::slice::{from_raw_parts, from_raw_parts_mut};
use std::sync::atomic::Ordering;
use crate::atomic_integer::AtomicInteger;
use crate::volatile_memory::VolatileSlice;
/// Types for which it is safe to initialize from raw data.
///
/// # Safety
///
/// A type `T` is `ByteValued` if and only if it can be initialized by reading its contents from a
/// byte array. This is generally true for all plain-old-data structs. It is notably not true for
/// any type that includes a reference.
///
/// Implementing this trait guarantees that it is safe to instantiate the struct with random data.
pub unsafe trait ByteValued: Copy + Default + Send + Sync {
/// Converts a slice of raw data into a reference of `Self`.
///
/// The value of `data` is not copied. Instead a reference is made from the given slice. The
/// value of `Self` will depend on the representation of the type in memory, and may change in
/// an unstable fashion.
///
/// This will return `None` if the length of data does not match the size of `Self`, or if the
/// data is not aligned for the type of `Self`.
fn from_slice(data: &[u8]) -> Option<&Self> {
// Early out to avoid an unneeded `align_to` call.
if data.len() != size_of::<Self>() {
return None;
}
// SAFETY: Safe because the ByteValued trait asserts any data is valid for this type, and
// we ensured the size of the pointer's buffer is the correct size. The `align_to` method
// ensures that we don't have any unaligned references. This aliases a pointer, but because
// the pointer is from a const slice reference, there are no mutable aliases. Finally, the
// reference returned can not outlive data because they have equal implicit lifetime
// constraints.
match unsafe { data.align_to::<Self>() } {
([], [mid], []) => Some(mid),
_ => None,
}
}
/// Converts a mutable slice of raw data into a mutable reference of `Self`.
///
/// Because `Self` is made from a reference to the mutable slice, mutations to the returned
/// reference are immediately reflected in `data`. The value of the returned `Self` will depend
/// on the representation of the type in memory, and may change in an unstable fashion.
///
/// This will return `None` if the length of data does not match the size of `Self`, or if the
/// data is not aligned for the type of `Self`.
fn from_mut_slice(data: &mut [u8]) -> Option<&mut Self> {
// Early out to avoid an unneeded `align_to_mut` call.
if data.len() != size_of::<Self>() {
return None;
}
// SAFETY: Safe because the ByteValued trait asserts any data is valid for this type, and
// we ensured the size of the pointer's buffer is the correct size. The `align_to` method
// ensures that we don't have any unaligned references. This aliases a pointer, but because
// the pointer is from a mut slice reference, we borrow the passed in mutable reference.
// Finally, the reference returned can not outlive data because they have equal implicit
// lifetime constraints.
match unsafe { data.align_to_mut::<Self>() } {
([], [mid], []) => Some(mid),
_ => None,
}
}
/// Converts a reference to `self` into a slice of bytes.
///
/// The value of `self` is not copied. Instead, the slice is made from a reference to `self`.
/// The value of bytes in the returned slice will depend on the representation of the type in
/// memory, and may change in an unstable fashion.
fn as_slice(&self) -> &[u8] {
// SAFETY: Safe because the entire size of self is accessible as bytes because the trait
// guarantees it. The lifetime of the returned slice is the same as the passed reference,
// so that no dangling pointers will result from this pointer alias.
unsafe { from_raw_parts(self as *const Self as *const u8, size_of::<Self>()) }
}
/// Converts a mutable reference to `self` into a mutable slice of bytes.
///
/// Because the slice is made from a reference to `self`, mutations to the returned slice are
/// immediately reflected in `self`. The value of bytes in the returned slice will depend on
/// the representation of the type in memory, and may change in an unstable fashion.
fn as_mut_slice(&mut self) -> &mut [u8] {
// SAFETY: Safe because the entire size of self is accessible as bytes because the trait
// guarantees it. The trait also guarantees that any combination of bytes is valid for this
// type, so modifying them in the form of a byte slice is valid. The lifetime of the
// returned slice is the same as the passed reference, so that no dangling pointers will
// result from this pointer alias. Although this does alias a mutable pointer, we do so by
// exclusively borrowing the given mutable reference.
unsafe { from_raw_parts_mut(self as *mut Self as *mut u8, size_of::<Self>()) }
}
/// Converts a mutable reference to `self` into a `VolatileSlice`. This is
/// useful because `VolatileSlice` provides a `Bytes<usize>` implementation.
///
/// # Safety
///
/// Unlike most `VolatileMemory` implementation, this method requires an exclusive
/// reference to `self`; this trivially fulfills `VolatileSlice::new`'s requirement
/// that all accesses to `self` use volatile accesses (because there can
/// be no other accesses).
fn as_bytes(&mut self) -> VolatileSlice {
// SAFETY: This is safe because the lifetime is the same as self
unsafe { VolatileSlice::new(self as *mut Self as usize as *mut _, size_of::<Self>()) }
}
}
macro_rules! byte_valued_array {
($T:ty, $($N:expr)+) => {
$(
// SAFETY: All intrinsic types and arrays of intrinsic types are ByteValued.
// They are just numbers.
unsafe impl ByteValued for [$T; $N] {}
)+
}
}
macro_rules! byte_valued_type {
($T:ty) => {
// SAFETY: Safe as long T is POD.
// We are using this macro to generated the implementation for integer types below.
unsafe impl ByteValued for $T {}
byte_valued_array! {
$T,
0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
30 31 32
}
};
}
byte_valued_type!(u8);
byte_valued_type!(u16);
byte_valued_type!(u32);
byte_valued_type!(u64);
byte_valued_type!(usize);
byte_valued_type!(i8);
byte_valued_type!(i16);
byte_valued_type!(i32);
byte_valued_type!(i64);
byte_valued_type!(isize);
/// A trait used to identify types which can be accessed atomically by proxy.
pub trait AtomicAccess:
ByteValued
// Could not find a more succinct way of stating that `Self` can be converted
// into `Self::A::V`, and the other way around.
+ From<<<Self as AtomicAccess>::A as AtomicInteger>::V>
+ Into<<<Self as AtomicAccess>::A as AtomicInteger>::V>
{
/// The `AtomicInteger` that atomic operations on `Self` are based on.
type A: AtomicInteger;
}
macro_rules! impl_atomic_access {
($T:ty, $A:path) => {
impl AtomicAccess for $T {
type A = $A;
}
};
}
impl_atomic_access!(i8, std::sync::atomic::AtomicI8);
impl_atomic_access!(i16, std::sync::atomic::AtomicI16);
impl_atomic_access!(i32, std::sync::atomic::AtomicI32);
#[cfg(any(
target_arch = "x86_64",
target_arch = "aarch64",
target_arch = "powerpc64",
target_arch = "s390x"
))]
impl_atomic_access!(i64, std::sync::atomic::AtomicI64);
impl_atomic_access!(u8, std::sync::atomic::AtomicU8);
impl_atomic_access!(u16, std::sync::atomic::AtomicU16);
impl_atomic_access!(u32, std::sync::atomic::AtomicU32);
#[cfg(any(
target_arch = "x86_64",
target_arch = "aarch64",
target_arch = "powerpc64",
target_arch = "s390x"
))]
impl_atomic_access!(u64, std::sync::atomic::AtomicU64);
impl_atomic_access!(isize, std::sync::atomic::AtomicIsize);
impl_atomic_access!(usize, std::sync::atomic::AtomicUsize);
/// A container to host a range of bytes and access its content.
///
/// Candidates which may implement this trait include:
/// - anonymous memory areas
/// - mmapped memory areas
/// - data files
/// - a proxy to access memory on remote
pub trait Bytes<A> {
/// Associated error codes
type E;
/// Writes a slice into the container at `addr`.
///
/// Returns the number of bytes written. The number of bytes written can
/// be less than the length of the slice if there isn't enough room in the
/// container.
fn write(&self, buf: &[u8], addr: A) -> Result<usize, Self::E>;
/// Reads data from the container at `addr` into a slice.
///
/// Returns the number of bytes read. The number of bytes read can be less than the length
/// of the slice if there isn't enough data within the container.
fn read(&self, buf: &mut [u8], addr: A) -> Result<usize, Self::E>;
/// Writes the entire content of a slice into the container at `addr`.
///
/// # Errors
///
/// Returns an error if there isn't enough space within the container to write the entire slice.
/// Part of the data may have been copied nevertheless.
fn write_slice(&self, buf: &[u8], addr: A) -> Result<(), Self::E>;
/// Reads data from the container at `addr` to fill an entire slice.
///
/// # Errors
///
/// Returns an error if there isn't enough data within the container to fill the entire slice.
/// Part of the data may have been copied nevertheless.
fn read_slice(&self, buf: &mut [u8], addr: A) -> Result<(), Self::E>;
/// Writes an object into the container at `addr`.
///
/// # Errors
///
/// Returns an error if the object doesn't fit inside the container.
fn write_obj<T: ByteValued>(&self, val: T, addr: A) -> Result<(), Self::E> {
self.write_slice(val.as_slice(), addr)
}
/// Reads an object from the container at `addr`.
///
/// Reading from a volatile area isn't strictly safe as it could change mid-read.
/// However, as long as the type T is plain old data and can handle random initialization,
/// everything will be OK.
///
/// # Errors
///
/// Returns an error if there's not enough data inside the container.
fn read_obj<T: ByteValued>(&self, addr: A) -> Result<T, Self::E> {
let mut result: T = Default::default();
self.read_slice(result.as_mut_slice(), addr).map(|_| result)
}
/// Reads up to `count` bytes from an object and writes them into the container at `addr`.
///
/// Returns the number of bytes written into the container.
///
/// # Arguments
/// * `addr` - Begin writing at this address.
/// * `src` - Copy from `src` into the container.
/// * `count` - Copy `count` bytes from `src` into the container.
fn read_from<F>(&self, addr: A, src: &mut F, count: usize) -> Result<usize, Self::E>
where
F: Read;
/// Reads exactly `count` bytes from an object and writes them into the container at `addr`.
///
/// # Errors
///
/// Returns an error if `count` bytes couldn't have been copied from `src` to the container.
/// Part of the data may have been copied nevertheless.
///
/// # Arguments
/// * `addr` - Begin writing at this address.
/// * `src` - Copy from `src` into the container.
/// * `count` - Copy exactly `count` bytes from `src` into the container.
fn read_exact_from<F>(&self, addr: A, src: &mut F, count: usize) -> Result<(), Self::E>
where
F: Read;
/// Reads up to `count` bytes from the container at `addr` and writes them it into an object.
///
/// Returns the number of bytes written into the object.
///
/// # Arguments
/// * `addr` - Begin reading from this address.
/// * `dst` - Copy from the container to `dst`.
/// * `count` - Copy `count` bytes from the container to `dst`.
fn write_to<F>(&self, addr: A, dst: &mut F, count: usize) -> Result<usize, Self::E>
where
F: Write;
/// Reads exactly `count` bytes from the container at `addr` and writes them into an object.
///
/// # Errors
///
/// Returns an error if `count` bytes couldn't have been copied from the container to `dst`.
/// Part of the data may have been copied nevertheless.
///
/// # Arguments
/// * `addr` - Begin reading from this address.
/// * `dst` - Copy from the container to `dst`.
/// * `count` - Copy exactly `count` bytes from the container to `dst`.
fn write_all_to<F>(&self, addr: A, dst: &mut F, count: usize) -> Result<(), Self::E>
where
F: Write;
/// Atomically store a value at the specified address.
fn store<T: AtomicAccess>(&self, val: T, addr: A, order: Ordering) -> Result<(), Self::E>;
/// Atomically load a value from the specified address.
fn load<T: AtomicAccess>(&self, addr: A, order: Ordering) -> Result<T, Self::E>;
}
#[cfg(test)]
pub(crate) mod tests {
#![allow(clippy::undocumented_unsafe_blocks)]
use super::*;
use std::fmt::Debug;
use std::mem::align_of;
use std::slice;
// Helper method to test atomic accesses for a given `b: Bytes` that's supposed to be
// zero-initialized.
pub fn check_atomic_accesses<A, B>(b: B, addr: A, bad_addr: A)
where
A: Copy,
B: Bytes<A>,
B::E: Debug,
{
let val = 100u32;
assert_eq!(b.load::<u32>(addr, Ordering::Relaxed).unwrap(), 0);
b.store(val, addr, Ordering::Relaxed).unwrap();
assert_eq!(b.load::<u32>(addr, Ordering::Relaxed).unwrap(), val);
assert!(b.load::<u32>(bad_addr, Ordering::Relaxed).is_err());
assert!(b.store(val, bad_addr, Ordering::Relaxed).is_err());
}
fn check_byte_valued_type<T>()
where
T: ByteValued + PartialEq + Debug + Default,
{
let mut data = [0u8; 32];
let pre_len = {
let (pre, _, _) = unsafe { data.align_to::<T>() };
pre.len()
};
{
let aligned_data = &mut data[pre_len..pre_len + size_of::<T>()];
{
let mut val: T = Default::default();
assert_eq!(T::from_slice(aligned_data), Some(&val));
assert_eq!(T::from_mut_slice(aligned_data), Some(&mut val));
assert_eq!(val.as_slice(), aligned_data);
assert_eq!(val.as_mut_slice(), aligned_data);
}
}
for i in 1..size_of::<T>() {
let begin = pre_len + i;
let end = begin + size_of::<T>();
let unaligned_data = &mut data[begin..end];
{
if align_of::<T>() != 1 {
assert_eq!(T::from_slice(unaligned_data), None);
assert_eq!(T::from_mut_slice(unaligned_data), None);
}
}
}
// Check the early out condition
{
assert!(T::from_slice(&data).is_none());
assert!(T::from_mut_slice(&mut data).is_none());
}
}
#[test]
fn test_byte_valued() {
check_byte_valued_type::<u8>();
check_byte_valued_type::<u16>();
check_byte_valued_type::<u32>();
check_byte_valued_type::<u64>();
check_byte_valued_type::<usize>();
check_byte_valued_type::<i8>();
check_byte_valued_type::<i16>();
check_byte_valued_type::<i32>();
check_byte_valued_type::<i64>();
check_byte_valued_type::<isize>();
}
pub const MOCK_BYTES_CONTAINER_SIZE: usize = 10;
pub struct MockBytesContainer {
container: [u8; MOCK_BYTES_CONTAINER_SIZE],
}
impl MockBytesContainer {
pub fn new() -> Self {
MockBytesContainer {
container: [0; MOCK_BYTES_CONTAINER_SIZE],
}
}
pub fn validate_slice_op(&self, buf: &[u8], addr: usize) -> Result<(), ()> {
if MOCK_BYTES_CONTAINER_SIZE - buf.len() <= addr {
return Err(());
}
Ok(())
}
}
impl Bytes<usize> for MockBytesContainer {
type E = ();
fn write(&self, _: &[u8], _: usize) -> Result<usize, Self::E> {
unimplemented!()
}
fn read(&self, _: &mut [u8], _: usize) -> Result<usize, Self::E> {
unimplemented!()
}
fn write_slice(&self, buf: &[u8], addr: usize) -> Result<(), Self::E> {
self.validate_slice_op(buf, addr)?;
// We need to get a mut reference to `self.container`.
let container_ptr = self.container[addr..].as_ptr() as usize as *mut u8;
let container = unsafe { slice::from_raw_parts_mut(container_ptr, buf.len()) };
container.copy_from_slice(buf);
Ok(())
}
fn read_slice(&self, buf: &mut [u8], addr: usize) -> Result<(), Self::E> {
self.validate_slice_op(buf, addr)?;
buf.copy_from_slice(&self.container[addr..buf.len()]);
Ok(())
}
fn read_from<F>(&self, _: usize, _: &mut F, _: usize) -> Result<usize, Self::E>
where
F: Read,
{
unimplemented!()
}
fn read_exact_from<F>(&self, _: usize, _: &mut F, _: usize) -> Result<(), Self::E>
where
F: Read,
{
unimplemented!()
}
fn write_to<F>(&self, _: usize, _: &mut F, _: usize) -> Result<usize, Self::E>
where
F: Write,
{
unimplemented!()
}
fn write_all_to<F>(&self, _: usize, _: &mut F, _: usize) -> Result<(), Self::E>
where
F: Write,
{
unimplemented!()
}
fn store<T: AtomicAccess>(
&self,
_val: T,
_addr: usize,
_order: Ordering,
) -> Result<(), Self::E> {
unimplemented!()
}
fn load<T: AtomicAccess>(&self, _addr: usize, _order: Ordering) -> Result<T, Self::E> {
unimplemented!()
}
}
#[test]
fn test_bytes() {
let bytes = MockBytesContainer::new();
assert!(bytes.write_obj(std::u64::MAX, 0).is_ok());
assert_eq!(bytes.read_obj::<u64>(0).unwrap(), std::u64::MAX);
assert!(bytes
.write_obj(std::u64::MAX, MOCK_BYTES_CONTAINER_SIZE)
.is_err());
assert!(bytes.read_obj::<u64>(MOCK_BYTES_CONTAINER_SIZE).is_err());
}
#[repr(C)]
#[derive(Copy, Clone, Default)]
struct S {
a: u32,
b: u32,
}
unsafe impl ByteValued for S {}
#[test]
fn byte_valued_slice() {
let a: [u8; 8] = [0, 0, 0, 0, 1, 1, 1, 1];
let mut s: S = Default::default();
s.as_bytes().copy_from(&a);
assert_eq!(s.a, 0);
assert_eq!(s.b, 0x0101_0101);
}
}