1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
//! This module implements a compiler for compiling the rnix AST
//! representation to Tvix bytecode.
//!
//! A note on `unwrap()`: This module contains a lot of calls to
//! `unwrap()` or `expect(...)` on data structures returned by `rnix`.
//! The reason for this is that rnix uses the same data structures to
//! represent broken and correct ASTs, so all typed AST variants have
//! the ability to represent an incorrect node.
//!
//! However, at the time that the AST is passed to the compiler we
//! have verified that `rnix` considers the code to be correct, so all
//! variants are fulfilled. In cases where the invariant is guaranteed
//! by the code in this module, `debug_assert!` has been used to catch
//! mistakes early during development.

mod bindings;
mod import;
mod optimiser;
mod scope;

use codemap::Span;
use rnix::ast::{self, AstToken};
use smol_str::SmolStr;
use std::collections::{BTreeMap, HashMap};
use std::path::{Path, PathBuf};
use std::rc::{Rc, Weak};

use crate::chunk::Chunk;
use crate::errors::{CatchableErrorKind, Error, ErrorKind, EvalResult};
use crate::observer::CompilerObserver;
use crate::opcode::{CodeIdx, ConstantIdx, Count, JumpOffset, OpCode, UpvalueIdx};
use crate::spans::LightSpan;
use crate::spans::ToSpan;
use crate::value::{Closure, Formals, Lambda, NixAttrs, Thunk, Value};
use crate::warnings::{EvalWarning, WarningKind};
use crate::CoercionKind;
use crate::SourceCode;

use self::scope::{LocalIdx, LocalPosition, Scope, Upvalue, UpvalueKind};

/// Represents the result of compiling a piece of Nix code. If
/// compilation was successful, the resulting bytecode can be passed
/// to the VM.
pub struct CompilationOutput {
    pub lambda: Rc<Lambda>,
    pub warnings: Vec<EvalWarning>,
    pub errors: Vec<Error>,

    // This field must outlive the rc::Weak reference which breaks the
    // builtins -> import -> builtins reference cycle. For this
    // reason, it must be passed to the VM.
    pub globals: Rc<GlobalsMap>,
}

/// Represents the lambda currently being compiled.
struct LambdaCtx {
    lambda: Lambda,
    scope: Scope,
    captures_with_stack: bool,
    unthunk: bool,
}

impl LambdaCtx {
    fn new() -> Self {
        LambdaCtx {
            lambda: Lambda::default(),
            scope: Default::default(),
            captures_with_stack: false,
            unthunk: false,
        }
    }

    fn inherit(&self) -> Self {
        LambdaCtx {
            lambda: Lambda::default(),
            scope: self.scope.inherit(),
            captures_with_stack: false,
            unthunk: false,
        }
    }
}

/// When compiling functions with an argument attribute set destructuring pattern,
/// we need to do multiple passes over the declared formal arguments when setting
/// up their local bindings (similarly to `let … in` expressions and recursive
/// attribute sets. For this purpose, this struct is used to represent the two
/// kinds of formal arguments:
///
/// - `TrackedFormal::NoDefault` is always required and causes an evaluation error
///   if the corresponding attribute is missing in a function call.
/// - `TrackedFormal::WithDefault` may be missing in the passed attribute set—
///   in which case a `default_expr` will be evaluated and placed in the formal
///   argument's local variable slot.
enum TrackedFormal {
    NoDefault {
        local_idx: LocalIdx,
        pattern_entry: ast::PatEntry,
    },
    WithDefault {
        local_idx: LocalIdx,
        /// Extra phantom local used for coordinating runtime dispatching not observable to
        /// the language user. Detailed description in `compile_param_pattern()`.
        finalise_request_idx: LocalIdx,
        default_expr: ast::Expr,
        pattern_entry: ast::PatEntry,
    },
}

impl TrackedFormal {
    fn pattern_entry(&self) -> &ast::PatEntry {
        match self {
            TrackedFormal::NoDefault { pattern_entry, .. } => pattern_entry,
            TrackedFormal::WithDefault { pattern_entry, .. } => pattern_entry,
        }
    }
    fn local_idx(&self) -> LocalIdx {
        match self {
            TrackedFormal::NoDefault { local_idx, .. } => *local_idx,
            TrackedFormal::WithDefault { local_idx, .. } => *local_idx,
        }
    }
}

/// The map of globally available functions and other values that
/// should implicitly be resolvable in the global scope.
pub(crate) type GlobalsMap = HashMap<&'static str, Value>;

/// Set of builtins that (if they exist) should be made available in
/// the global scope, meaning that they can be accessed not just
/// through `builtins.<name>`, but directly as `<name>`. This is not
/// configurable, it is based on what Nix 2.3 exposed.
const GLOBAL_BUILTINS: &[&str] = &[
    "abort",
    "baseNameOf",
    "derivation",
    "derivationStrict",
    "dirOf",
    "fetchGit",
    "fetchMercurial",
    "fetchTarball",
    "fromTOML",
    "import",
    "isNull",
    "map",
    "placeholder",
    "removeAttrs",
    "scopedImport",
    "throw",
    "toString",
    "__curPos",
];

pub struct Compiler<'source, 'observer> {
    contexts: Vec<LambdaCtx>,
    warnings: Vec<EvalWarning>,
    errors: Vec<Error>,
    root_dir: PathBuf,

    /// Carries all known global tokens; the full set of which is
    /// created when the compiler is invoked.
    ///
    /// Each global has an associated token, which when encountered as
    /// an identifier is resolved against the scope poisoning logic,
    /// and a function that should emit code for the token.
    globals: Rc<GlobalsMap>,

    /// Reference to the struct holding all of the source code, which
    /// is used for error creation.
    source: &'source SourceCode,

    /// File reference in the source map for the current file, which
    /// is used for creating spans.
    file: &'source codemap::File,

    /// Carry an observer for the compilation process, which is called
    /// whenever a chunk is emitted.
    observer: &'observer mut dyn CompilerObserver,

    /// Carry a count of nested scopes which have requested the
    /// compiler not to emit anything. This used for compiling dead
    /// code branches to catch errors & warnings in them.
    dead_scope: usize,
}

impl Compiler<'_, '_> {
    pub(super) fn span_for<S: ToSpan>(&self, to_span: &S) -> Span {
        to_span.span_for(self.file)
    }
}

/// Compiler construction
impl<'source, 'observer> Compiler<'source, 'observer> {
    pub(crate) fn new(
        location: Option<PathBuf>,
        globals: Rc<GlobalsMap>,
        source: &'source SourceCode,
        file: &'source codemap::File,
        observer: &'observer mut dyn CompilerObserver,
    ) -> EvalResult<Self> {
        let mut root_dir = match location {
            Some(dir) if cfg!(target_arch = "wasm32") || dir.is_absolute() => Ok(dir),
            _ => {
                let current_dir = std::env::current_dir().map_err(|e| {
                    Error::new(
                        ErrorKind::RelativePathResolution(format!(
                            "could not determine current directory: {}",
                            e
                        )),
                        file.span,
                        source.clone(),
                    )
                })?;
                if let Some(dir) = location {
                    Ok(current_dir.join(dir))
                } else {
                    Ok(current_dir)
                }
            }
        }?;

        // If the path passed from the caller points to a file, the
        // filename itself needs to be truncated as this must point to a
        // directory.
        if root_dir.is_file() {
            root_dir.pop();
        }

        #[cfg(not(target_arch = "wasm32"))]
        debug_assert!(root_dir.is_absolute());

        Ok(Self {
            root_dir,
            source,
            file,
            observer,
            globals,
            contexts: vec![LambdaCtx::new()],
            warnings: vec![],
            errors: vec![],
            dead_scope: 0,
        })
    }
}

// Helper functions for emitting code and metadata to the internal
// structures of the compiler.
impl Compiler<'_, '_> {
    fn context(&self) -> &LambdaCtx {
        &self.contexts[self.contexts.len() - 1]
    }

    fn context_mut(&mut self) -> &mut LambdaCtx {
        let idx = self.contexts.len() - 1;
        &mut self.contexts[idx]
    }

    fn chunk(&mut self) -> &mut Chunk {
        &mut self.context_mut().lambda.chunk
    }

    fn scope(&self) -> &Scope {
        &self.context().scope
    }

    fn scope_mut(&mut self) -> &mut Scope {
        &mut self.context_mut().scope
    }

    /// Push a single instruction to the current bytecode chunk and
    /// track the source span from which it was compiled.
    fn push_op<T: ToSpan>(&mut self, data: OpCode, node: &T) -> CodeIdx {
        if self.dead_scope > 0 {
            return CodeIdx(0);
        }

        let span = self.span_for(node);
        self.chunk().push_op(data, span)
    }

    /// Emit a single constant to the current bytecode chunk and track
    /// the source span from which it was compiled.
    pub(super) fn emit_constant<T: ToSpan>(&mut self, value: Value, node: &T) {
        if self.dead_scope > 0 {
            return;
        }

        let idx = self.chunk().push_constant(value);
        self.push_op(OpCode::OpConstant(idx), node);
    }
}

// Actual code-emitting AST traversal methods.
impl Compiler<'_, '_> {
    fn compile(&mut self, slot: LocalIdx, expr: ast::Expr) {
        let expr = optimiser::optimise_expr(self, slot, expr);

        match &expr {
            ast::Expr::Literal(literal) => self.compile_literal(literal),
            ast::Expr::Path(path) => self.compile_path(slot, path),
            ast::Expr::Str(s) => self.compile_str(slot, s),

            ast::Expr::UnaryOp(op) => self.thunk(slot, op, move |c, s| c.compile_unary_op(s, op)),

            ast::Expr::BinOp(binop) => {
                self.thunk(slot, binop, move |c, s| c.compile_binop(s, binop))
            }

            ast::Expr::HasAttr(has_attr) => {
                self.thunk(slot, has_attr, move |c, s| c.compile_has_attr(s, has_attr))
            }

            ast::Expr::List(list) => self.thunk(slot, list, move |c, s| c.compile_list(s, list)),

            ast::Expr::AttrSet(attrs) => {
                self.thunk(slot, attrs, move |c, s| c.compile_attr_set(s, attrs))
            }

            ast::Expr::Select(select) => {
                self.thunk(slot, select, move |c, s| c.compile_select(s, select))
            }

            ast::Expr::Assert(assert) => {
                self.thunk(slot, assert, move |c, s| c.compile_assert(s, assert))
            }
            ast::Expr::IfElse(if_else) => {
                self.thunk(slot, if_else, move |c, s| c.compile_if_else(s, if_else))
            }

            ast::Expr::LetIn(let_in) => {
                self.thunk(slot, let_in, move |c, s| c.compile_let_in(s, let_in))
            }

            ast::Expr::Ident(ident) => self.compile_ident(slot, ident),
            ast::Expr::With(with) => self.thunk(slot, with, |c, s| c.compile_with(s, with)),
            ast::Expr::Lambda(lambda) => self.thunk(slot, lambda, move |c, s| {
                c.compile_lambda_or_thunk(false, s, lambda, |c, s| c.compile_lambda(s, lambda))
            }),
            ast::Expr::Apply(apply) => {
                self.thunk(slot, apply, move |c, s| c.compile_apply(s, apply))
            }

            // Parenthesized expressions are simply unwrapped, leaving
            // their value on the stack.
            ast::Expr::Paren(paren) => self.compile(slot, paren.expr().unwrap()),

            ast::Expr::LegacyLet(legacy_let) => self.thunk(slot, legacy_let, move |c, s| {
                c.compile_legacy_let(s, legacy_let)
            }),

            ast::Expr::Root(_) => unreachable!("there cannot be more than one root"),
            ast::Expr::Error(_) => unreachable!("compile is only called on validated trees"),
        }
    }

    /// Compiles an expression, but does not emit any code for it as
    /// it is considered dead. This will still catch errors and
    /// warnings in that expression.
    ///
    /// A warning about the that code being dead is assumed to already be
    /// emitted by the caller of this.
    fn compile_dead_code(&mut self, slot: LocalIdx, node: ast::Expr) {
        self.dead_scope += 1;
        self.compile(slot, node);
        self.dead_scope -= 1;
    }

    fn compile_literal(&mut self, node: &ast::Literal) {
        let value = match node.kind() {
            ast::LiteralKind::Float(f) => Value::Float(f.value().unwrap()),
            ast::LiteralKind::Integer(i) => match i.value() {
                Ok(v) => Value::Integer(v),
                Err(err) => return self.emit_error(node, err.into()),
            },

            ast::LiteralKind::Uri(u) => {
                self.emit_warning(node, WarningKind::DeprecatedLiteralURL);
                Value::from(u.syntax().text())
            }
        };

        self.emit_constant(value, node);
    }

    fn compile_path(&mut self, slot: LocalIdx, node: &ast::Path) {
        // TODO(tazjin): placeholder implementation while waiting for
        // https://github.com/nix-community/rnix-parser/pull/96

        let raw_path = node.to_string();
        let path = if raw_path.starts_with('/') {
            Path::new(&raw_path).to_owned()
        } else if raw_path.starts_with('~') {
            // We assume that home paths start with ~/ or fail to parse
            // TODO: this should be checked using a parse-fail test.
            debug_assert!(raw_path.len() > 2 && raw_path.starts_with("~/"));

            let home_relative_path = &raw_path[2..(raw_path.len())];
            self.emit_constant(
                Value::UnresolvedPath(Box::new(home_relative_path.into())),
                node,
            );
            self.push_op(OpCode::OpResolveHomePath, node);
            return;
        } else if raw_path.starts_with('<') {
            // TODO: decide what to do with findFile
            if raw_path.len() == 2 {
                return self.emit_constant(
                    Value::Catchable(Box::new(CatchableErrorKind::NixPathResolution(
                        "Empty <> path not allowed".into(),
                    ))),
                    node,
                );
            }
            let path = &raw_path[1..(raw_path.len() - 1)];
            // Make a thunk to resolve the path (without using `findFile`, at least for now?)
            return self.thunk(slot, node, move |c, _| {
                c.emit_constant(Value::UnresolvedPath(Box::new(path.into())), node);
                c.push_op(OpCode::OpFindFile, node);
            });
        } else {
            let mut buf = self.root_dir.clone();
            buf.push(&raw_path);
            buf
        };

        // TODO: Use https://github.com/rust-lang/rfcs/issues/2208
        // once it is available
        let value = Value::Path(Box::new(crate::value::canon_path(path)));
        self.emit_constant(value, node);
    }

    /// Helper that compiles the given string parts strictly. The caller
    /// (`compile_str`) needs to figure out if the result of compiling this
    /// needs to be thunked or not.
    fn compile_str_parts(
        &mut self,
        slot: LocalIdx,
        parent_node: &ast::Str,
        parts: Vec<ast::InterpolPart<String>>,
    ) {
        // The string parts are produced in literal order, however
        // they need to be reversed on the stack in order to
        // efficiently create the real string in case of
        // interpolation.
        for part in parts.iter().rev() {
            match part {
                // Interpolated expressions are compiled as normal and
                // dealt with by the VM before being assembled into
                // the final string. We need to coerce them here,
                // so OpInterpolate definitely has a string to consume.
                ast::InterpolPart::Interpolation(ipol) => {
                    self.compile(slot, ipol.expr().unwrap());
                    // implicitly forces as well
                    self.push_op(
                        OpCode::OpCoerceToString(CoercionKind {
                            strong: false,
                            import_paths: true,
                        }),
                        ipol,
                    );
                }

                ast::InterpolPart::Literal(lit) => {
                    self.emit_constant(Value::from(lit.as_str()), parent_node);
                }
            }
        }

        if parts.len() != 1 {
            self.push_op(OpCode::OpInterpolate(Count(parts.len())), parent_node);
        }
    }

    fn compile_str(&mut self, slot: LocalIdx, node: &ast::Str) {
        let parts = node.normalized_parts();

        // We need to thunk string expressions if they are the result of
        // interpolation. A string that only consists of a single part (`"${foo}"`)
        // can't desugar to the enclosed expression (`foo`) because we need to
        // coerce the result to a string value. This would require forcing the
        // value of the inner expression, so we need to wrap it in another thunk.
        if parts.len() != 1 || matches!(&parts[0], ast::InterpolPart::Interpolation(_)) {
            self.thunk(slot, node, move |c, s| {
                c.compile_str_parts(s, node, parts);
            });
        } else {
            self.compile_str_parts(slot, node, parts);
        }
    }

    fn compile_unary_op(&mut self, slot: LocalIdx, op: &ast::UnaryOp) {
        self.compile(slot, op.expr().unwrap());
        self.emit_force(op);

        let opcode = match op.operator().unwrap() {
            ast::UnaryOpKind::Invert => OpCode::OpInvert,
            ast::UnaryOpKind::Negate => OpCode::OpNegate,
        };

        self.push_op(opcode, op);
    }

    fn compile_binop(&mut self, slot: LocalIdx, op: &ast::BinOp) {
        use ast::BinOpKind;

        // Short-circuiting and other strange operators, which are
        // under the same node type as NODE_BIN_OP, but need to be
        // handled separately (i.e. before compiling the expressions
        // used for standard binary operators).

        match op.operator().unwrap() {
            BinOpKind::And => return self.compile_and(slot, op),
            BinOpKind::Or => return self.compile_or(slot, op),
            BinOpKind::Implication => return self.compile_implication(slot, op),
            _ => {}
        };

        // For all other operators, the two values need to be left on
        // the stack in the correct order before pushing the
        // instruction for the operation itself.
        self.compile(slot, op.lhs().unwrap());
        self.emit_force(&op.lhs().unwrap());

        self.compile(slot, op.rhs().unwrap());
        self.emit_force(&op.rhs().unwrap());

        match op.operator().unwrap() {
            BinOpKind::Add => self.push_op(OpCode::OpAdd, op),
            BinOpKind::Sub => self.push_op(OpCode::OpSub, op),
            BinOpKind::Mul => self.push_op(OpCode::OpMul, op),
            BinOpKind::Div => self.push_op(OpCode::OpDiv, op),
            BinOpKind::Update => self.push_op(OpCode::OpAttrsUpdate, op),
            BinOpKind::Equal => self.push_op(OpCode::OpEqual, op),
            BinOpKind::Less => self.push_op(OpCode::OpLess, op),
            BinOpKind::LessOrEq => self.push_op(OpCode::OpLessOrEq, op),
            BinOpKind::More => self.push_op(OpCode::OpMore, op),
            BinOpKind::MoreOrEq => self.push_op(OpCode::OpMoreOrEq, op),
            BinOpKind::Concat => self.push_op(OpCode::OpConcat, op),

            BinOpKind::NotEqual => {
                self.push_op(OpCode::OpEqual, op);
                self.push_op(OpCode::OpInvert, op)
            }

            // Handled by separate branch above.
            BinOpKind::And | BinOpKind::Implication | BinOpKind::Or => {
                unreachable!()
            }
        };
    }

    fn compile_and(&mut self, slot: LocalIdx, node: &ast::BinOp) {
        debug_assert!(
            matches!(node.operator(), Some(ast::BinOpKind::And)),
            "compile_and called with wrong operator kind: {:?}",
            node.operator(),
        );

        // Leave left-hand side value on the stack.
        self.compile(slot, node.lhs().unwrap());
        self.emit_force(&node.lhs().unwrap());

        let throw_idx = self.push_op(OpCode::OpJumpIfCatchable(JumpOffset(0)), node);
        // If this value is false, jump over the right-hand side - the
        // whole expression is false.
        let end_idx = self.push_op(OpCode::OpJumpIfFalse(JumpOffset(0)), node);

        // Otherwise, remove the previous value and leave the
        // right-hand side on the stack. Its result is now the value
        // of the whole expression.
        self.push_op(OpCode::OpPop, node);
        self.compile(slot, node.rhs().unwrap());
        self.emit_force(&node.rhs().unwrap());

        self.patch_jump(end_idx);
        self.push_op(OpCode::OpAssertBool, node);
        self.patch_jump(throw_idx);
    }

    fn compile_or(&mut self, slot: LocalIdx, node: &ast::BinOp) {
        debug_assert!(
            matches!(node.operator(), Some(ast::BinOpKind::Or)),
            "compile_or called with wrong operator kind: {:?}",
            node.operator(),
        );

        // Leave left-hand side value on the stack
        self.compile(slot, node.lhs().unwrap());
        self.emit_force(&node.lhs().unwrap());

        let throw_idx = self.push_op(OpCode::OpJumpIfCatchable(JumpOffset(0)), node);
        // Opposite of above: If this value is **true**, we can
        // short-circuit the right-hand side.
        let end_idx = self.push_op(OpCode::OpJumpIfTrue(JumpOffset(0)), node);
        self.push_op(OpCode::OpPop, node);
        self.compile(slot, node.rhs().unwrap());
        self.emit_force(&node.rhs().unwrap());

        self.patch_jump(end_idx);
        self.push_op(OpCode::OpAssertBool, node);
        self.patch_jump(throw_idx);
    }

    fn compile_implication(&mut self, slot: LocalIdx, node: &ast::BinOp) {
        debug_assert!(
            matches!(node.operator(), Some(ast::BinOpKind::Implication)),
            "compile_implication called with wrong operator kind: {:?}",
            node.operator(),
        );

        // Leave left-hand side value on the stack and invert it.
        self.compile(slot, node.lhs().unwrap());
        self.emit_force(&node.lhs().unwrap());
        let throw_idx = self.push_op(OpCode::OpJumpIfCatchable(JumpOffset(0)), node);
        self.push_op(OpCode::OpInvert, node);

        // Exactly as `||` (because `a -> b` = `!a || b`).
        let end_idx = self.push_op(OpCode::OpJumpIfTrue(JumpOffset(0)), node);
        self.push_op(OpCode::OpPop, node);
        self.compile(slot, node.rhs().unwrap());
        self.emit_force(&node.rhs().unwrap());

        self.patch_jump(end_idx);
        self.push_op(OpCode::OpAssertBool, node);
        self.patch_jump(throw_idx);
    }

    /// Compile list literals into equivalent bytecode. List
    /// construction is fairly simple, consisting of pushing code for
    /// each literal element and an instruction with the element
    /// count.
    ///
    /// The VM, after evaluating the code for each element, simply
    /// constructs the list from the given number of elements.
    fn compile_list(&mut self, slot: LocalIdx, node: &ast::List) {
        let mut count = 0;

        // Open a temporary scope to correctly account for stack items
        // that exist during the construction.
        self.scope_mut().begin_scope();

        for item in node.items() {
            // Start tracing new stack slots from the second list
            // element onwards. The first list element is located in
            // the stack slot of the list itself.
            let item_slot = match count {
                0 => slot,
                _ => {
                    let item_span = self.span_for(&item);
                    self.scope_mut().declare_phantom(item_span, false)
                }
            };

            count += 1;
            self.compile(item_slot, item);
            self.scope_mut().mark_initialised(item_slot);
        }

        if count == 0 {
            self.unthunk();
        }

        self.push_op(OpCode::OpList(Count(count)), node);
        self.scope_mut().end_scope();
    }

    fn compile_attr(&mut self, slot: LocalIdx, node: &ast::Attr) {
        match node {
            ast::Attr::Dynamic(dynamic) => {
                self.compile(slot, dynamic.expr().unwrap());
                self.emit_force(&dynamic.expr().unwrap());
            }

            ast::Attr::Str(s) => {
                self.compile_str(slot, s);
                self.emit_force(s);
            }

            ast::Attr::Ident(ident) => self.emit_literal_ident(ident),
        }
    }

    fn compile_has_attr(&mut self, slot: LocalIdx, node: &ast::HasAttr) {
        // Put the attribute set on the stack.
        self.compile(slot, node.expr().unwrap());
        self.emit_force(node);

        // Push all path fragments with an operation for fetching the
        // next nested element, for all fragments except the last one.
        for (count, fragment) in node.attrpath().unwrap().attrs().enumerate() {
            if count > 0 {
                self.push_op(OpCode::OpAttrsTrySelect, &fragment);
                self.emit_force(&fragment);
            }

            self.compile_attr(slot, &fragment);
        }

        // After the last fragment, emit the actual instruction that
        // leaves a boolean on the stack.
        self.push_op(OpCode::OpHasAttr, node);
    }

    /// When compiling select or select_or expressions, an optimisation is
    /// possible of compiling the set emitted a constant attribute set by
    /// immediately replacing it with the actual value.
    ///
    /// We take care not to emit an error here, as that would interfere with
    /// thunking behaviour (there can be perfectly valid Nix code that accesses
    /// a statically known attribute set that is lacking a key, because that
    /// thunk is never evaluated). If anything is missing, just inform the
    /// caller that the optimisation did not take place and move on. We may want
    /// to emit warnings here in the future.
    fn optimise_select(&mut self, path: &ast::Attrpath) -> bool {
        // If compiling the set emitted a constant attribute set, the
        // associated constant can immediately be replaced with the
        // actual value.
        //
        // We take care not to emit an error here, as that would
        // interfere with thunking behaviour (there can be perfectly
        // valid Nix code that accesses a statically known attribute
        // set that is lacking a key, because that thunk is never
        // evaluated). If anything is missing, just move on. We may
        // want to emit warnings here in the future.
        if let Some(OpCode::OpConstant(ConstantIdx(idx))) = self.chunk().code.last().cloned() {
            let constant = &mut self.chunk().constants[idx];
            if let Value::Attrs(attrs) = constant {
                let mut path_iter = path.attrs();

                // Only do this optimisation if there is a *single*
                // element in the attribute path. It is extremely
                // unlikely that we'd have a static nested set.
                if let (Some(attr), None) = (path_iter.next(), path_iter.next()) {
                    // Only do this optimisation for statically known attrs.
                    if let Some(ident) = expr_static_attr_str(&attr) {
                        if let Some(selected_value) = attrs.select(ident.as_bytes()) {
                            *constant = selected_value.clone();

                            // If this worked, we can unthunk the current thunk.
                            self.unthunk();

                            return true;
                        }
                    }
                }
            }
        }

        false
    }

    fn compile_select(&mut self, slot: LocalIdx, node: &ast::Select) {
        let set = node.expr().unwrap();
        let path = node.attrpath().unwrap();

        if node.or_token().is_some() {
            return self.compile_select_or(slot, set, path, node.default_expr().unwrap());
        }

        // Push the set onto the stack
        self.compile(slot, set.clone());
        if self.optimise_select(&path) {
            return;
        }

        // Compile each key fragment and emit access instructions.
        //
        // TODO: multi-select instruction to avoid re-pushing attrs on
        // nested selects.
        for fragment in path.attrs() {
            // Force the current set value.
            self.emit_force(&set);

            self.compile_attr(slot, &fragment);
            self.push_op(OpCode::OpAttrsSelect, &fragment);
        }
    }

    /// Compile an `or` expression into a chunk of conditional jumps.
    ///
    /// If at any point during attribute set traversal a key is
    /// missing, the `OpAttrOrNotFound` instruction will leave a
    /// special sentinel value on the stack.
    ///
    /// After each access, a conditional jump evaluates the top of the
    /// stack and short-circuits to the default value if it sees the
    /// sentinel.
    ///
    /// Code like `{ a.b = 1; }.a.c or 42` yields this bytecode and
    /// runtime stack:
    ///
    /// ```notrust
    ///            Bytecode                     Runtime stack
    ///  ┌────────────────────────────┐   ┌─────────────────────────┐
    ///  │    ...                     │   │ ...                     │
    ///  │ 5  OP_ATTRS(1)             │ → │ 5  [ { a.b = 1; }     ] │
    ///  │ 6  OP_CONSTANT("a")        │ → │ 6  [ { a.b = 1; } "a" ] │
    ///  │ 7  OP_ATTR_OR_NOT_FOUND    │ → │ 7  [ { b = 1; }       ] │
    ///  │ 8  JUMP_IF_NOT_FOUND(13)   │ → │ 8  [ { b = 1; }       ] │
    ///  │ 9  OP_CONSTANT("C")        │ → │ 9  [ { b = 1; } "c"   ] │
    ///  │ 10 OP_ATTR_OR_NOT_FOUND    │ → │ 10 [ NOT_FOUND        ] │
    ///  │ 11 JUMP_IF_NOT_FOUND(13)   │ → │ 11 [                  ] │
    ///  │ 12 JUMP(14)                │   │ ..     jumped over      │
    ///  │ 13 CONSTANT(42)            │ → │ 12 [ 42 ]               │
    ///  │ 14 ...                     │   │ ..   ....               │
    ///  └────────────────────────────┘   └─────────────────────────┘
    /// ```
    fn compile_select_or(
        &mut self,
        slot: LocalIdx,
        set: ast::Expr,
        path: ast::Attrpath,
        default: ast::Expr,
    ) {
        self.compile(slot, set);
        if self.optimise_select(&path) {
            return;
        }

        let mut jumps = vec![];

        for fragment in path.attrs() {
            self.emit_force(&fragment);
            self.compile_attr(slot, &fragment.clone());
            self.push_op(OpCode::OpAttrsTrySelect, &fragment);
            jumps.push(self.push_op(OpCode::OpJumpIfNotFound(JumpOffset(0)), &fragment));
        }

        let final_jump = self.push_op(OpCode::OpJump(JumpOffset(0)), &path);

        for jump in jumps {
            self.patch_jump(jump);
        }

        // Compile the default value expression and patch the final
        // jump to point *beyond* it.
        self.compile(slot, default);
        self.patch_jump(final_jump);
    }

    /// Compile `assert` expressions using jumping instructions in the VM.
    ///
    /// ```notrust
    ///                        ┌─────────────────────┐
    ///                        │ 0  [ conditional ]  │
    ///                        │ 1   JUMP_IF_FALSE  →┼─┐
    ///                        │ 2  [  main body  ]  │ │ Jump to else body if
    ///                       ┌┼─3─←     JUMP        │ │ condition is false.
    ///  Jump over else body  ││ 4   OP_ASSERT_FAIL ←┼─┘
    ///  if condition is true.└┼─5─→     ...         │
    ///                        └─────────────────────┘
    /// ```
    fn compile_assert(&mut self, slot: LocalIdx, node: &ast::Assert) {
        // Compile the assertion condition to leave its value on the stack.
        self.compile(slot, node.condition().unwrap());
        self.emit_force(&node.condition().unwrap());
        let throw_idx = self.push_op(OpCode::OpJumpIfCatchable(JumpOffset(0)), node);
        let then_idx = self.push_op(OpCode::OpJumpIfFalse(JumpOffset(0)), node);

        self.push_op(OpCode::OpPop, node);
        self.compile(slot, node.body().unwrap());

        let else_idx = self.push_op(OpCode::OpJump(JumpOffset(0)), node);

        self.patch_jump(then_idx);
        self.push_op(OpCode::OpPop, node);
        self.push_op(OpCode::OpAssertFail, &node.condition().unwrap());

        self.patch_jump(else_idx);
        self.patch_jump(throw_idx);
    }

    /// Compile conditional expressions using jumping instructions in the VM.
    ///
    /// ```notrust
    ///                        ┌────────────────────┐
    ///                        │ 0  [ conditional ] │
    ///                        │ 1   JUMP_IF_FALSE →┼─┐
    ///                        │ 2  [  main body  ] │ │ Jump to else body if
    ///                       ┌┼─3─←     JUMP       │ │ condition is false.
    ///  Jump over else body  ││ 4  [  else body  ]←┼─┘
    ///  if condition is true.└┼─5─→     ...        │
    ///                        └────────────────────┘
    /// ```
    fn compile_if_else(&mut self, slot: LocalIdx, node: &ast::IfElse) {
        self.compile(slot, node.condition().unwrap());
        self.emit_force(&node.condition().unwrap());

        let throw_idx = self.push_op(
            OpCode::OpJumpIfCatchable(JumpOffset(0)),
            &node.condition().unwrap(),
        );
        let then_idx = self.push_op(
            OpCode::OpJumpIfFalse(JumpOffset(0)),
            &node.condition().unwrap(),
        );

        self.push_op(OpCode::OpPop, node); // discard condition value
        self.compile(slot, node.body().unwrap());

        let else_idx = self.push_op(OpCode::OpJump(JumpOffset(0)), node);

        self.patch_jump(then_idx); // patch jump *to* else_body
        self.push_op(OpCode::OpPop, node); // discard condition value
        self.compile(slot, node.else_body().unwrap());

        self.patch_jump(else_idx); // patch jump *over* else body
        self.patch_jump(throw_idx); // patch jump *over* else body
    }

    /// Compile `with` expressions by emitting instructions that
    /// pop/remove the indices of attribute sets that are implicitly
    /// in scope through `with` on the "with-stack".
    fn compile_with(&mut self, slot: LocalIdx, node: &ast::With) {
        self.scope_mut().begin_scope();
        // TODO: Detect if the namespace is just an identifier, and
        // resolve that directly (thus avoiding duplication on the
        // stack).
        self.compile(slot, node.namespace().unwrap());

        let span = self.span_for(&node.namespace().unwrap());

        // The attribute set from which `with` inherits values
        // occupies a slot on the stack, but this stack slot is not
        // directly accessible. As it must be accounted for to
        // calculate correct offsets, what we call a "phantom" local
        // is declared here.
        let local_idx = self.scope_mut().declare_phantom(span, true);
        let with_idx = self.scope().stack_index(local_idx);

        self.scope_mut().push_with();

        self.push_op(OpCode::OpPushWith(with_idx), &node.namespace().unwrap());

        self.compile(slot, node.body().unwrap());

        self.push_op(OpCode::OpPopWith, node);
        self.scope_mut().pop_with();
        self.cleanup_scope(node);
    }

    /// Compiles pattern function arguments, such as `{ a, b }: ...`.
    ///
    /// These patterns are treated as a special case of locals binding
    /// where the attribute set itself is placed on the first stack
    /// slot of the call frame (either as a phantom, or named in case
    /// of an `@` binding), and the function call sets up the rest of
    /// the stack as if the parameters were rewritten into a `let`
    /// binding.
    ///
    /// For example:
    ///
    /// ```nix
    /// ({ a, b ? 2, c ? a * b, ... }@args: <body>)  { a = 10; }
    /// ```
    ///
    /// would be compiled similarly to a binding such as
    ///
    /// ```nix
    /// let args = { a = 10; };
    /// in let a = args.a;
    ///        b = args.a or 2;
    ///        c = args.c or a * b;
    ///    in <body>
    /// ```
    ///
    /// However, there are two properties of pattern function arguments that can
    /// not be compiled by desugaring in this way:
    ///
    /// 1. Bindings have to fail if too many arguments are provided. This is
    ///    done by emitting a special instruction that checks the set of keys
    ///    from a constant containing the expected keys.
    /// 2. Formal arguments with a default expression are (as an optimization and
    ///    because it is simpler) not wrapped in another thunk, instead compiled
    ///    and accessed separately. This means that the default expression may
    ///    never make it into the local's stack slot if the argument is provided
    ///    by the caller. We need to take this into account and skip any
    ///    operations specific to the expression like thunk finalisation in such
    ///    cases.
    fn compile_param_pattern(&mut self, pattern: &ast::Pattern) -> (Formals, CodeIdx) {
        let span = self.span_for(pattern);

        let (set_idx, pat_bind_name) = match pattern.pat_bind() {
            Some(name) => {
                let pat_bind_name = name.ident().unwrap().to_string();
                (
                    self.declare_local(&name, pat_bind_name.clone()),
                    Some(pat_bind_name),
                )
            }
            None => (self.scope_mut().declare_phantom(span, true), None),
        };

        // At call time, the attribute set is already at the top of the stack.
        self.scope_mut().mark_initialised(set_idx);
        self.emit_force(pattern);
        let throw_idx = self.push_op(OpCode::OpJumpIfCatchable(JumpOffset(0)), pattern);
        // Evaluation fails on a type error, even if the argument(s) are unused.
        self.push_op(OpCode::OpAssertAttrs, pattern);

        let ellipsis = pattern.ellipsis_token().is_some();
        if !ellipsis {
            self.push_op(OpCode::OpValidateClosedFormals, pattern);
        }

        // Similar to `let ... in ...`, we now do multiple passes over
        // the bindings to first declare them, then populate them, and
        // then finalise any necessary recursion into the scope.
        let mut entries: Vec<TrackedFormal> = vec![];
        let mut arguments = BTreeMap::default();

        for entry in pattern.pat_entries() {
            let ident = entry.ident().unwrap();
            let idx = self.declare_local(&ident, ident.to_string());

            arguments.insert(ident.into(), entry.default().is_some());

            if let Some(default_expr) = entry.default() {
                entries.push(TrackedFormal::WithDefault {
                    local_idx: idx,
                    // This phantom is used to track at runtime (!) whether we need to
                    // finalise the local's stack slot or not. The relevant instructions are
                    // emitted in the second pass where the mechanism is explained as well.
                    finalise_request_idx: {
                        let span = self.span_for(&default_expr);
                        self.scope_mut().declare_phantom(span, false)
                    },
                    default_expr,
                    pattern_entry: entry,
                });
            } else {
                entries.push(TrackedFormal::NoDefault {
                    local_idx: idx,
                    pattern_entry: entry,
                });
            }
        }

        // For each of the bindings, push the set on the stack and
        // attempt to select from it.
        let stack_idx = self.scope().stack_index(set_idx);
        for tracked_formal in entries.iter() {
            self.push_op(OpCode::OpGetLocal(stack_idx), pattern);
            self.emit_literal_ident(&tracked_formal.pattern_entry().ident().unwrap());

            let idx = tracked_formal.local_idx();

            // Use the same mechanism as `compile_select_or` if a
            // default value was provided, or simply select otherwise.
            match tracked_formal {
                TrackedFormal::WithDefault {
                    default_expr,
                    pattern_entry,
                    ..
                } => {
                    // The tricky bit about compiling a formal argument with a default value
                    // is that the default may be a thunk that may depend on the value of
                    // other formal arguments, i.e. may need to be finalised. This
                    // finalisation can only happen if we are actually using the default
                    // value—otherwise OpFinalise will crash on an already finalised (or
                    // non-thunk) value.
                    //
                    // Thus we use an additional local to track whether we wound up
                    // defaulting or not. `FinaliseRequest(false)` indicates that we should
                    // not finalise, as we did not default.
                    //
                    // We are being wasteful with VM stack space in case of default
                    // expressions that don't end up needing to be finalised. Unfortunately
                    // we only know better after compiling the default expression, so
                    // avoiding unnecessary locals would mean we'd need to modify the chunk
                    // after the fact.
                    self.push_op(OpCode::OpAttrsTrySelect, &pattern_entry.ident().unwrap());
                    let jump_to_default =
                        self.push_op(OpCode::OpJumpIfNotFound(JumpOffset(0)), default_expr);

                    self.emit_constant(Value::FinaliseRequest(false), default_expr);

                    let jump_over_default =
                        self.push_op(OpCode::OpJump(JumpOffset(0)), default_expr);

                    self.patch_jump(jump_to_default);

                    // Does not need to thunked since compile() already does so when necessary
                    self.compile(idx, default_expr.clone());

                    self.emit_constant(Value::FinaliseRequest(true), default_expr);

                    self.patch_jump(jump_over_default);
                }
                TrackedFormal::NoDefault { pattern_entry, .. } => {
                    self.push_op(OpCode::OpAttrsSelect, &pattern_entry.ident().unwrap());
                }
            }

            self.scope_mut().mark_initialised(idx);
            if let TrackedFormal::WithDefault {
                finalise_request_idx,
                ..
            } = tracked_formal
            {
                self.scope_mut().mark_initialised(*finalise_request_idx);
            }
        }

        for tracked_formal in entries.iter() {
            if self.scope()[tracked_formal.local_idx()].needs_finaliser {
                let stack_idx = self.scope().stack_index(tracked_formal.local_idx());
                match tracked_formal {
                    TrackedFormal::NoDefault { .. } =>
                        panic!("Tvix bug: local for pattern formal needs finaliser, but has no default expr"),
                    TrackedFormal::WithDefault { finalise_request_idx, .. } => {
                        let finalise_request_stack_idx = self.scope().stack_index(*finalise_request_idx);

                        // TODO(sterni): better spans
                        self.push_op(
                            OpCode::OpGetLocal(finalise_request_stack_idx),
                            pattern
                        );
                        let jump_over_finalise =
                            self.push_op(
                                OpCode::OpJumpIfNoFinaliseRequest(
                                    JumpOffset(0)),
                                pattern
                            );
                        self.push_op(
                            OpCode::OpFinalise(stack_idx),
                            pattern,
                        );
                        self.patch_jump(jump_over_finalise);
                        // Get rid of finaliser request value on the stack
                        self.push_op(OpCode::OpPop, pattern);
                    }
                }
            }
        }

        (
            (Formals {
                arguments,
                ellipsis,
                span,
                name: pat_bind_name,
            }),
            throw_idx,
        )
    }

    fn compile_lambda(&mut self, slot: LocalIdx, node: &ast::Lambda) -> Option<CodeIdx> {
        // Compile the function itself, recording its formal arguments (if any)
        // for later use
        let formals = match node.param().unwrap() {
            ast::Param::Pattern(pat) => Some(self.compile_param_pattern(&pat)),

            ast::Param::IdentParam(param) => {
                let name = param
                    .ident()
                    .unwrap()
                    .ident_token()
                    .unwrap()
                    .text()
                    .to_string();

                let idx = self.declare_local(&param, &name);
                self.scope_mut().mark_initialised(idx);
                None
            }
        };

        self.compile(slot, node.body().unwrap());
        if let Some((formals, throw_idx)) = formals {
            self.context_mut().lambda.formals = Some(formals);
            Some(throw_idx)
        } else {
            self.context_mut().lambda.formals = None;
            None
        }
    }

    fn thunk<N, F>(&mut self, outer_slot: LocalIdx, node: &N, content: F)
    where
        N: ToSpan,
        F: FnOnce(&mut Compiler, LocalIdx),
    {
        self.compile_lambda_or_thunk(true, outer_slot, node, |comp, idx| {
            content(comp, idx);
            None
        })
    }

    /// Mark the current thunk as redundant, i.e. possible to merge directly
    /// into its parent lambda context without affecting runtime behaviour.
    fn unthunk(&mut self) {
        self.context_mut().unthunk = true;
    }

    /// Compile an expression into a runtime closure or thunk
    fn compile_lambda_or_thunk<N, F>(
        &mut self,
        is_suspended_thunk: bool,
        outer_slot: LocalIdx,
        node: &N,
        content: F,
    ) where
        N: ToSpan,
        F: FnOnce(&mut Compiler, LocalIdx) -> Option<CodeIdx>,
    {
        let name = self.scope()[outer_slot].name();
        self.new_context();

        // Set the (optional) name of the current slot on the lambda that is
        // being compiled.
        self.context_mut().lambda.name = name;

        let span = self.span_for(node);
        let slot = self.scope_mut().declare_phantom(span, false);
        self.scope_mut().begin_scope();

        let throw_idx = content(self, slot);
        self.cleanup_scope(node);
        if let Some(throw_idx) = throw_idx {
            self.patch_jump(throw_idx);
        }

        // TODO: determine and insert enclosing name, if available.

        // Pop the lambda context back off, and emit the finished
        // lambda as a constant.
        let mut compiled = self.contexts.pop().unwrap();

        // The compiler might have decided to unthunk, i.e. raise the compiled
        // code to the parent context. In that case we do so and return right
        // away.
        if compiled.unthunk && is_suspended_thunk {
            self.chunk().extend(compiled.lambda.chunk);
            return;
        }

        // Emit an instruction to inform the VM that the chunk has ended.
        compiled
            .lambda
            .chunk
            .push_op(OpCode::OpReturn, self.span_for(node));

        // Capturing the with stack counts as an upvalue, as it is
        // emitted as an upvalue data instruction.
        if compiled.captures_with_stack {
            compiled.lambda.upvalue_count += 1;
        }

        let lambda = Rc::new(compiled.lambda);
        if is_suspended_thunk {
            self.observer.observe_compiled_thunk(&lambda);
        } else {
            self.observer.observe_compiled_lambda(&lambda);
        }

        // If no upvalues are captured, emit directly and move on.
        if lambda.upvalue_count == 0 {
            self.emit_constant(
                if is_suspended_thunk {
                    Value::Thunk(Thunk::new_suspended(lambda, LightSpan::new_actual(span)))
                } else {
                    Value::Closure(Rc::new(Closure::new(lambda)))
                },
                node,
            );
            return;
        }

        // Otherwise, we need to emit the variable number of
        // operands that allow the runtime to close over the
        // upvalues and leave a blueprint in the constant index from
        // which the result can be constructed.
        let blueprint_idx = self.chunk().push_constant(Value::Blueprint(lambda));

        let code_idx = self.push_op(
            if is_suspended_thunk {
                OpCode::OpThunkSuspended(blueprint_idx)
            } else {
                OpCode::OpThunkClosure(blueprint_idx)
            },
            node,
        );

        self.emit_upvalue_data(
            outer_slot,
            node,
            compiled.scope.upvalues,
            compiled.captures_with_stack,
        );

        if !is_suspended_thunk && !self.scope()[outer_slot].needs_finaliser {
            if !self.scope()[outer_slot].must_thunk {
                // The closure has upvalues, but is not recursive.  Therefore no thunk is required,
                // which saves us the overhead of Rc<RefCell<>>
                self.chunk()[code_idx] = OpCode::OpClosure(blueprint_idx);
            } else {
                // This case occurs when a closure has upvalue-references to itself but does not need a
                // finaliser.  Since no OpFinalise will be emitted later on we synthesize one here.
                // It is needed here only to set [`Closure::is_finalised`] which is used for sanity checks.
                #[cfg(debug_assertions)]
                self.push_op(
                    OpCode::OpFinalise(self.scope().stack_index(outer_slot)),
                    &self.span_for(node),
                );
            }
        }
    }

    fn compile_apply(&mut self, slot: LocalIdx, node: &ast::Apply) {
        // To call a function, we leave its arguments on the stack,
        // followed by the function expression itself, and then emit a
        // call instruction. This way, the stack is perfectly laid out
        // to enter the function call straight away.
        self.compile(slot, node.argument().unwrap());
        self.compile(slot, node.lambda().unwrap());
        self.emit_force(&node.lambda().unwrap());
        self.push_op(OpCode::OpCall, node);
    }

    /// Emit the data instructions that the runtime needs to correctly
    /// assemble the upvalues struct.
    fn emit_upvalue_data<T: ToSpan>(
        &mut self,
        slot: LocalIdx,
        node: &T,
        upvalues: Vec<Upvalue>,
        capture_with: bool,
    ) {
        for upvalue in upvalues {
            match upvalue.kind {
                UpvalueKind::Local(idx) => {
                    let target = &self.scope()[idx];
                    let stack_idx = self.scope().stack_index(idx);

                    // If the target is not yet initialised, we need to defer
                    // the local access
                    if !target.initialised {
                        self.push_op(OpCode::DataDeferredLocal(stack_idx), &upvalue.span);
                        self.scope_mut().mark_needs_finaliser(slot);
                    } else {
                        // a self-reference
                        if slot == idx {
                            self.scope_mut().mark_must_thunk(slot);
                        }
                        self.push_op(OpCode::DataStackIdx(stack_idx), &upvalue.span);
                    }
                }

                UpvalueKind::Upvalue(idx) => {
                    self.push_op(OpCode::DataUpvalueIdx(idx), &upvalue.span);
                }
            };
        }

        if capture_with {
            // TODO(tazjin): probably better to emit span for the ident that caused this
            self.push_op(OpCode::DataCaptureWith, node);
        }
    }

    /// Emit the literal string value of an identifier. Required for
    /// several operations related to attribute sets, where
    /// identifiers are used as string keys.
    fn emit_literal_ident(&mut self, ident: &ast::Ident) {
        self.emit_constant(Value::String(ident.clone().into()), ident);
    }

    /// Patch the jump instruction at the given index, setting its
    /// jump offset from the placeholder to the current code position.
    ///
    /// This is required because the actual target offset of jumps is
    /// not known at the time when the jump operation itself is
    /// emitted.
    fn patch_jump(&mut self, idx: CodeIdx) {
        let offset = JumpOffset(self.chunk().code.len() - 1 - idx.0);

        match &mut self.chunk().code[idx.0] {
            OpCode::OpJump(n)
            | OpCode::OpJumpIfFalse(n)
            | OpCode::OpJumpIfTrue(n)
            | OpCode::OpJumpIfCatchable(n)
            | OpCode::OpJumpIfNotFound(n)
            | OpCode::OpJumpIfNoFinaliseRequest(n) => {
                *n = offset;
            }

            op => panic!("attempted to patch unsupported op: {:?}", op),
        }
    }

    /// Decrease scope depth of the current function and emit
    /// instructions to clean up the stack at runtime.
    fn cleanup_scope<N: ToSpan>(&mut self, node: &N) {
        // When ending a scope, all corresponding locals need to be
        // removed, but the value of the body needs to remain on the
        // stack. This is implemented by a separate instruction.
        let (popcount, unused_spans) = self.scope_mut().end_scope();

        for span in &unused_spans {
            self.emit_warning(span, WarningKind::UnusedBinding);
        }

        if popcount > 0 {
            self.push_op(OpCode::OpCloseScope(Count(popcount)), node);
        }
    }

    /// Open a new lambda context within which to compile a function,
    /// closure or thunk.
    fn new_context(&mut self) {
        self.contexts.push(self.context().inherit());
    }

    /// Declare a local variable known in the scope that is being
    /// compiled by pushing it to the locals. This is used to
    /// determine the stack offset of variables.
    fn declare_local<S: Into<String>, N: ToSpan>(&mut self, node: &N, name: S) -> LocalIdx {
        let name = name.into();
        let depth = self.scope().scope_depth();

        // Do this little dance to turn name:&'a str into the same
        // string with &'static lifetime, as required by WarningKind
        if let Some((global_ident, _)) = self.globals.get_key_value(name.as_str()) {
            self.emit_warning(node, WarningKind::ShadowedGlobal(global_ident));
        }

        let span = self.span_for(node);
        let (idx, shadowed) = self.scope_mut().declare_local(name, span);

        if let Some(shadow_idx) = shadowed {
            let other = &self.scope()[shadow_idx];
            if other.depth == depth {
                self.emit_error(node, ErrorKind::VariableAlreadyDefined(other.span));
            }
        }

        idx
    }

    /// Determine whether the current lambda context has any ancestors
    /// that use dynamic scope resolution, and mark contexts as
    /// needing to capture their enclosing `with`-stack in their
    /// upvalues.
    fn has_dynamic_ancestor(&mut self) -> bool {
        let mut ancestor_has_with = false;

        for ctx in self.contexts.iter_mut() {
            if ancestor_has_with {
                // If the ancestor has an active with stack, mark this
                // lambda context as needing to capture it.
                ctx.captures_with_stack = true;
            } else {
                // otherwise, check this context and move on
                ancestor_has_with = ctx.scope.has_with();
            }
        }

        ancestor_has_with
    }

    fn emit_force<N: ToSpan>(&mut self, node: &N) {
        if let Some(&OpCode::OpConstant(c)) = self.chunk().last_op() {
            if !self.chunk().get_constant(c).unwrap().is_thunk() {
                // Optimization: Don't emit a force op for non-thunk constants, since they don't
                // need one!
                // TODO: this is probably doable for more ops (?)
                return;
            }
        }

        self.push_op(OpCode::OpForce, node);
    }

    fn emit_warning<N: ToSpan>(&mut self, node: &N, kind: WarningKind) {
        let span = self.span_for(node);
        self.warnings.push(EvalWarning { kind, span })
    }

    fn emit_error<N: ToSpan>(&mut self, node: &N, kind: ErrorKind) {
        let span = self.span_for(node);
        self.errors
            .push(Error::new(kind, span, self.source.clone()))
    }
}

/// Convert a non-dynamic string expression to a string if possible.
fn expr_static_str(node: &ast::Str) -> Option<SmolStr> {
    let mut parts = node.normalized_parts();

    if parts.len() != 1 {
        return None;
    }

    if let Some(ast::InterpolPart::Literal(lit)) = parts.pop() {
        return Some(SmolStr::new(lit));
    }

    None
}

/// Convert the provided `ast::Attr` into a statically known string if
/// possible.
fn expr_static_attr_str(node: &ast::Attr) -> Option<SmolStr> {
    match node {
        ast::Attr::Ident(ident) => Some(ident.ident_token().unwrap().text().into()),
        ast::Attr::Str(s) => expr_static_str(s),

        // The dynamic node type is just a wrapper. C++ Nix does not care
        // about the dynamic wrapper when determining whether the node
        // itself is dynamic, it depends solely on the expression inside
        // (i.e. `let ${"a"} = 1; in a` is valid).
        ast::Attr::Dynamic(ref dynamic) => match dynamic.expr().unwrap() {
            ast::Expr::Str(s) => expr_static_str(&s),
            _ => None,
        },
    }
}

/// Create a delayed source-only builtin compilation, for a builtin
/// which is written in Nix code.
///
/// **Important:** tvix *panics* if a builtin with invalid source code
/// is supplied. This is because there is no user-friendly way to
/// thread the errors out of this function right now.
fn compile_src_builtin(
    name: &'static str,
    code: &str,
    source: SourceCode,
    weak: &Weak<GlobalsMap>,
) -> Value {
    use std::fmt::Write;

    let parsed = rnix::ast::Root::parse(code);

    if !parsed.errors().is_empty() {
        let mut out = format!("BUG: code for source-builtin '{}' had parser errors", name);
        for error in parsed.errors() {
            writeln!(out, "{}", error).unwrap();
        }

        panic!("{}", out);
    }

    let file = source.add_file(format!("<src-builtins/{}.nix>", name), code.to_string());
    let weak = weak.clone();

    Value::Thunk(Thunk::new_suspended_native(Box::new(move || {
        let result = compile(
            &parsed.tree().expr().unwrap(),
            None,
            weak.upgrade().unwrap(),
            &source,
            &file,
            &mut crate::observer::NoOpObserver {},
        )
        .map_err(|e| ErrorKind::NativeError {
            gen_type: "derivation",
            err: Box::new(e),
        })?;

        if !result.errors.is_empty() {
            return Err(ErrorKind::ImportCompilerError {
                path: format!("src-builtins/{}.nix", name).into(),
                errors: result.errors,
            });
        }

        Ok(Value::Thunk(Thunk::new_suspended(
            result.lambda,
            LightSpan::Actual { span: file.span },
        )))
    })))
}

/// Prepare the full set of globals available in evaluated code. These
/// are constructed from the set of builtins supplied by the caller,
/// which are made available globally under the `builtins` identifier.
///
/// A subset of builtins (specified by [`GLOBAL_BUILTINS`]) is
/// available globally *iff* they are set.
///
/// Optionally adds the `import` feature if desired by the caller.
pub fn prepare_globals(
    builtins: Vec<(&'static str, Value)>,
    src_builtins: Vec<(&'static str, &'static str)>,
    source: SourceCode,
    enable_import: bool,
) -> Rc<GlobalsMap> {
    Rc::new_cyclic(Box::new(move |weak: &Weak<GlobalsMap>| {
        // First step is to construct the builtins themselves as
        // `NixAttrs`.
        let mut builtins: GlobalsMap = HashMap::from_iter(builtins);

        // At this point, optionally insert `import` if enabled. To
        // "tie the knot" of `import` needing the full set of globals
        // to instantiate its compiler, the `Weak` reference is passed
        // here.
        if enable_import {
            let import = Value::Builtin(import::builtins_import(weak, source.clone()));
            builtins.insert("import", import);
        }

        // Next, the actual map of globals which the compiler will use
        // to resolve identifiers is constructed.
        let mut globals: GlobalsMap = HashMap::new();

        // builtins contain themselves (`builtins.builtins`), which we
        // can resolve by manually constructing a suspended thunk that
        // dereferences the same weak pointer as above.
        let weak_globals = weak.clone();
        builtins.insert(
            "builtins",
            Value::Thunk(Thunk::new_suspended_native(Box::new(move || {
                Ok(weak_globals
                    .upgrade()
                    .unwrap()
                    .get("builtins")
                    .cloned()
                    .unwrap())
            }))),
        );

        // Insert top-level static value builtins.
        globals.insert("true", Value::Bool(true));
        globals.insert("false", Value::Bool(false));
        globals.insert("null", Value::Null);

        // If "source builtins" were supplied, compile them and insert
        // them.
        builtins.extend(src_builtins.into_iter().map(move |(name, code)| {
            let compiled = compile_src_builtin(name, code, source.clone(), weak);
            (name, compiled)
        }));

        // Construct the actual `builtins` attribute set and insert it
        // in the global scope.
        globals.insert(
            "builtins",
            Value::attrs(NixAttrs::from_iter(builtins.clone())),
        );

        // Finally, the builtins that should be globally available are
        // "elevated" to the outer scope.
        for global in GLOBAL_BUILTINS {
            if let Some(builtin) = builtins.get(global).cloned() {
                globals.insert(global, builtin);
            }
        }

        globals
    }))
}

pub fn compile(
    expr: &ast::Expr,
    location: Option<PathBuf>,
    globals: Rc<GlobalsMap>,
    source: &SourceCode,
    file: &codemap::File,
    observer: &mut dyn CompilerObserver,
) -> EvalResult<CompilationOutput> {
    let mut c = Compiler::new(location, globals.clone(), source, file, observer)?;

    let root_span = c.span_for(expr);
    let root_slot = c.scope_mut().declare_phantom(root_span, false);
    c.compile(root_slot, expr.clone());

    // The final operation of any top-level Nix program must always be
    // `OpForce`. A thunk should not be returned to the user in an
    // unevaluated state (though in practice, a value *containing* a
    // thunk might be returned).
    c.emit_force(expr);
    c.push_op(OpCode::OpReturn, &root_span);

    let lambda = Rc::new(c.contexts.pop().unwrap().lambda);
    c.observer.observe_compiled_toplevel(&lambda);

    Ok(CompilationOutput {
        lambda,
        warnings: c.warnings,
        errors: c.errors,
        globals,
    })
}