1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
//! This module contains the core algorithms.

use crate::keys::{match_keys, KeyMatch};
use crate::TrieKey;
use crate::TrieNode;
use std::borrow::Borrow;

use nibble_vec::Nibblet;

use self::DescendantResult::*;

impl<K, V> TrieNode<K, V>
where
    K: TrieKey,
{
    #[inline]
    pub fn get(&self, nv: &Nibblet) -> Option<&TrieNode<K, V>> {
        iterative_get(self, nv)
    }
    #[inline]
    pub fn get_mut(&mut self, nv: &Nibblet) -> Option<&mut TrieNode<K, V>> {
        iterative_get_mut(self, nv)
    }
    #[inline]
    pub fn insert(&mut self, key: K, value: V, nv: Nibblet) -> Option<V> {
        iterative_insert(self, key, value, nv)
    }
    #[inline]
    pub fn remove<Q: ?Sized>(&mut self, key: &Q) -> Option<V>
    where
        K: Borrow<Q>,
        Q: TrieKey,
    {
        recursive_remove(self, key)
    }
    #[inline]
    pub fn get_ancestor(&self, nv: &Nibblet) -> Option<(&TrieNode<K, V>, usize)> {
        get_ancestor(self, nv)
    }
    #[inline]
    pub fn get_raw_ancestor(&self, nv: &Nibblet) -> (&TrieNode<K, V>, usize) {
        get_raw_ancestor(self, nv)
    }
    #[inline]
    pub fn get_raw_descendant<'a>(&'a self, nv: &Nibblet) -> Option<DescendantResult<'a, K, V>> {
        get_raw_descendant(self, nv)
    }
}

macro_rules! get_func {
    (
        name: $name:ident,
        trie_type: $trie_type:ty,
        mutability: $($mut_:tt)*
    ) => {id!{
        #[inline]
        fn $name<'a, K, V>(trie: $trie_type, nv: &Nibblet) -> Option<$trie_type> {
            if nv.len() == 0 {
                return Some(trie);
            }

            let mut prev = trie;
            let mut depth = 0;

            loop {
                let bucket = nv.get(depth) as usize;
                let current = prev;
                if let Some(ref $($mut_)* child) = current.children[bucket] {
                    match match_keys(depth, nv, &child.key) {
                        KeyMatch::Full => {
                            return Some(child);
                        }
                        KeyMatch::SecondPrefix => {
                            depth += child.key.len();
                            prev = child;
                        }
                        _ => {
                            return None;
                        }
                    }
                } else {
                    return None;
                }
            }
        }
    }}
}

get_func!(name: iterative_get, trie_type: &'a TrieNode<K, V>, mutability: );
get_func!(name: iterative_get_mut, trie_type: &'a mut TrieNode<K, V>, mutability: mut);

#[inline]
fn iterative_insert<K, V>(trie: &mut TrieNode<K, V>, key: K, value: V, mut nv: Nibblet) -> Option<V>
where
    K: TrieKey,
{
    if nv.len() == 0 {
        return trie.replace_value(key, value);
    }

    let mut prev = trie;
    let mut depth = 0;

    loop {
        let bucket = nv.get(depth) as usize;
        let current = prev;
        if let Some(ref mut child) = current.children[bucket] {
            match match_keys(depth, &nv, &child.key) {
                KeyMatch::Full => {
                    return child.replace_value(key, value);
                }
                KeyMatch::Partial(idx) => {
                    // Split the existing child.
                    child.split(idx);

                    // Insert the new key below the prefix node.
                    let new_key = nv.split(depth + idx);
                    let new_key_bucket = new_key.get(0) as usize;

                    child.add_child(
                        new_key_bucket,
                        Box::new(TrieNode::with_key_value(new_key, key, value)),
                    );

                    return None;
                }
                KeyMatch::FirstPrefix => {
                    child.split(nv.len() - depth);
                    child.add_key_value(key, value);
                    return None;
                }
                KeyMatch::SecondPrefix => {
                    depth += child.key.len();
                    prev = child;
                }
            }
        } else {
            let node_key = nv.split(depth);
            current.add_child(
                bucket,
                Box::new(TrieNode::with_key_value(node_key, key, value)),
            );
            return None;
        }
    }
}

// TODO: clean this up and make it iterative.
#[inline]
fn recursive_remove<K, Q: ?Sized, V>(trie: &mut TrieNode<K, V>, key: &Q) -> Option<V>
where
    K: TrieKey,
    K: Borrow<Q>,
    Q: TrieKey,
{
    let nv = key.encode();

    if nv.len() == 0 {
        return trie.take_value(key);
    }

    let bucket = nv.get(0) as usize;

    let child = trie.take_child(bucket);

    match child {
        Some(mut child) => {
            match match_keys(0, &nv, &child.key) {
                KeyMatch::Full => {
                    let result = child.take_value(key);
                    if child.child_count != 0 {
                        // If removing this node's value has made it a value-less node with a
                        // single child, then merge its child.
                        let repl = if child.child_count == 1 {
                            get_merge_child(&mut child)
                        } else {
                            child
                        };
                        trie.add_child(bucket, repl);
                    }
                    result
                }
                KeyMatch::SecondPrefix => {
                    let depth = child.key.len();
                    rec_remove(trie, child, bucket, key, depth, &nv)
                }
                KeyMatch::FirstPrefix | KeyMatch::Partial(_) => {
                    trie.add_child(bucket, child);
                    None
                }
            }
        }
        None => None,
    }
}
#[inline]
fn get_merge_child<K, V>(trie: &mut TrieNode<K, V>) -> Box<TrieNode<K, V>>
where
    K: TrieKey,
{
    let mut child = trie.take_only_child();

    // Join the child's key onto the existing one.
    child.key = trie.key.clone().join(&child.key);

    child
}

// Tail-recursive remove function used by `recursive_remove`.
#[inline]
fn rec_remove<K, Q: ?Sized, V>(
    parent: &mut TrieNode<K, V>,
    mut middle: Box<TrieNode<K, V>>,
    prev_bucket: usize,
    key: &Q,
    depth: usize,
    nv: &Nibblet,
) -> Option<V>
where
    K: TrieKey,
    K: Borrow<Q>,
    Q: TrieKey,
{
    let bucket = nv.get(depth) as usize;

    let child = middle.take_child(bucket);
    parent.add_child(prev_bucket, middle);

    match child {
        Some(mut child) => {
            let middle = parent.children[prev_bucket].as_mut().unwrap();
            match match_keys(depth, nv, &child.key) {
                KeyMatch::Full => {
                    let result = child.take_value(key);

                    // If this node has children, keep it.
                    if child.child_count != 0 {
                        // If removing this node's value has made it a value-less node with a
                        // single child, then merge its child.
                        let repl = if child.child_count == 1 {
                            get_merge_child(&mut *child)
                        } else {
                            child
                        };
                        middle.add_child(bucket, repl);
                    }
                    // Otherwise, if the parent node now only has a single child, merge it.
                    else if middle.child_count == 1 && middle.key_value.is_none() {
                        let repl = get_merge_child(middle);
                        *middle = repl;
                    }

                    result
                }
                KeyMatch::SecondPrefix => {
                    let new_depth = depth + child.key.len();
                    rec_remove(middle, child, bucket, key, new_depth, nv)
                }
                KeyMatch::FirstPrefix | KeyMatch::Partial(_) => {
                    middle.add_child(bucket, child);
                    None
                }
            }
        }
        None => None,
    }
}
#[inline]
fn get_ancestor<'a, K, V>(
    trie: &'a TrieNode<K, V>,
    nv: &Nibblet,
) -> Option<(&'a TrieNode<K, V>, usize)>
where
    K: TrieKey,
{
    if nv.len() == 0 {
        return trie.as_value_node().map(|node| (node, 0));
    }

    let mut prev = trie;
    // The ancestor is such that all nodes upto and including `prev` have
    // already been considered.
    let mut ancestor = prev.as_value_node();
    let mut depth = 0;

    loop {
        let bucket = nv.get(depth) as usize;
        let current = prev;
        if let Some(ref child) = current.children[bucket] {
            match match_keys(depth, nv, &child.key) {
                KeyMatch::Full => {
                    return child
                        .as_value_node()
                        .map(|node| (node, depth + node.key.len()))
                        .or_else(|| ancestor.map(|anc| (anc, depth)));
                }
                KeyMatch::FirstPrefix | KeyMatch::Partial(_) => {
                    return ancestor.map(|anc| (anc, depth));
                }
                KeyMatch::SecondPrefix => {
                    depth += child.key.len();
                    ancestor = child.as_value_node().or(ancestor);
                    prev = child;
                }
            }
        } else {
            return ancestor.map(|anc| (anc, depth));
        }
    }
}
#[inline]
fn get_raw_ancestor<'a, K, V>(trie: &'a TrieNode<K, V>, nv: &Nibblet) -> (&'a TrieNode<K, V>, usize)
where
    K: TrieKey,
{
    if nv.len() == 0 {
        return (trie, 0);
    }

    let mut prev = trie;
    // The ancestor is such that all nodes upto and including `prev` have
    // already been considered.
    let mut ancestor = prev;
    let mut depth = 0;

    loop {
        let bucket = nv.get(depth) as usize;
        let current = prev;
        if let Some(ref child) = current.children[bucket] {
            match match_keys(depth, nv, &child.key) {
                KeyMatch::Full => {
                    return (child, depth + child.key.len());
                }
                KeyMatch::FirstPrefix | KeyMatch::Partial(_) => {
                    return (ancestor, depth);
                }
                KeyMatch::SecondPrefix => {
                    depth += child.key.len();
                    ancestor = child;
                    prev = child;
                }
            }
        } else {
            return (ancestor, depth);
        }
    }
}

// Type used to propogate subtrie construction instructions to the top-level `get_raw_descendant`
// method.
pub enum DescendantResult<'a, K: 'a, V: 'a> {
    NoModification(&'a TrieNode<K, V>),
    ExtendKey(&'a TrieNode<K, V>, usize, &'a Nibblet),
}
#[inline]
fn get_raw_descendant<'a, K, V>(
    trie: &'a TrieNode<K, V>,
    nv: &Nibblet,
) -> Option<DescendantResult<'a, K, V>> {
    if nv.len() == 0 {
        return Some(NoModification(trie));
    }

    let mut prev = trie;
    let mut depth = 0;

    loop {
        let bucket = nv.get(depth) as usize;
        let current = prev;
        if let Some(ref child) = current.children[bucket] {
            match match_keys(depth, nv, &child.key) {
                KeyMatch::Full => {
                    return Some(NoModification(child));
                }
                KeyMatch::FirstPrefix => {
                    return Some(ExtendKey(child, depth, &child.key));
                }
                KeyMatch::SecondPrefix => {
                    depth += child.key.len();
                    prev = child;
                }
                _ => {
                    return None;
                }
            }
        } else {
            return None;
        }
    }
}