1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
// Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
//
// Portions Copyright 2017 The Chromium OS Authors. All rights reserved.
//
// SPDX-License-Identifier: BSD-3-Clause
//! Trait and wrapper for working with C defined FAM structures.
//!
//! In C 99 an array of unknown size may appear within a struct definition as the last member
//! (as long as there is at least one other named member).
//! This is known as a flexible array member (FAM).
//! Pre C99, the same behavior could be achieved using zero length arrays.
//!
//! Flexible Array Members are the go-to choice for working with large amounts of data
//! prefixed by header values.
//!
//! For example the KVM API has many structures of this kind.
#[cfg(feature = "with-serde")]
use serde::de::{self, Deserialize, Deserializer, SeqAccess, Visitor};
#[cfg(feature = "with-serde")]
use serde::{ser::SerializeTuple, Serialize, Serializer};
use std::fmt;
#[cfg(feature = "with-serde")]
use std::marker::PhantomData;
use std::mem::{self, size_of};
/// Errors associated with the [`FamStructWrapper`](struct.FamStructWrapper.html) struct.
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum Error {
/// The max size has been exceeded
SizeLimitExceeded,
}
impl std::error::Error for Error {}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
Self::SizeLimitExceeded => write!(f, "The max size has been exceeded"),
}
}
}
/// Trait for accessing properties of C defined FAM structures.
///
/// # Safety
///
/// This is unsafe due to the number of constraints that aren't checked:
/// * the implementer should be a POD
/// * the implementor should contain a flexible array member of elements of type `Entry`
/// * `Entry` should be a POD
///
/// Violating these may cause problems.
///
/// # Example
///
/// ```
/// use vmm_sys_util::fam::*;
///
/// #[repr(C)]
/// #[derive(Default)]
/// pub struct __IncompleteArrayField<T>(::std::marker::PhantomData<T>, [T; 0]);
/// impl<T> __IncompleteArrayField<T> {
/// #[inline]
/// pub fn new() -> Self {
/// __IncompleteArrayField(::std::marker::PhantomData, [])
/// }
/// #[inline]
/// pub unsafe fn as_ptr(&self) -> *const T {
/// ::std::mem::transmute(self)
/// }
/// #[inline]
/// pub unsafe fn as_mut_ptr(&mut self) -> *mut T {
/// ::std::mem::transmute(self)
/// }
/// #[inline]
/// pub unsafe fn as_slice(&self, len: usize) -> &[T] {
/// ::std::slice::from_raw_parts(self.as_ptr(), len)
/// }
/// #[inline]
/// pub unsafe fn as_mut_slice(&mut self, len: usize) -> &mut [T] {
/// ::std::slice::from_raw_parts_mut(self.as_mut_ptr(), len)
/// }
/// }
///
/// #[repr(C)]
/// #[derive(Default)]
/// struct MockFamStruct {
/// pub len: u32,
/// pub padding: u32,
/// pub entries: __IncompleteArrayField<u32>,
/// }
///
/// unsafe impl FamStruct for MockFamStruct {
/// type Entry = u32;
///
/// fn len(&self) -> usize {
/// self.len as usize
/// }
///
/// fn set_len(&mut self, len: usize) {
/// self.len = len as u32
/// }
///
/// fn max_len() -> usize {
/// 100
/// }
///
/// fn as_slice(&self) -> &[u32] {
/// let len = self.len();
/// unsafe { self.entries.as_slice(len) }
/// }
///
/// fn as_mut_slice(&mut self) -> &mut [u32] {
/// let len = self.len();
/// unsafe { self.entries.as_mut_slice(len) }
/// }
/// }
///
/// type MockFamStructWrapper = FamStructWrapper<MockFamStruct>;
/// ```
#[allow(clippy::len_without_is_empty)]
pub unsafe trait FamStruct {
/// The type of the FAM entries
type Entry: PartialEq + Copy;
/// Get the FAM length
///
/// These type of structures contain a member that holds the FAM length.
/// This method will return the value of that member.
fn len(&self) -> usize;
/// Set the FAM length
///
/// These type of structures contain a member that holds the FAM length.
/// This method will set the value of that member.
fn set_len(&mut self, len: usize);
/// Get max allowed FAM length
///
/// This depends on each structure.
/// For example a structure representing the cpuid can contain at most 80 entries.
fn max_len() -> usize;
/// Get the FAM entries as slice
fn as_slice(&self) -> &[Self::Entry];
/// Get the FAM entries as mut slice
fn as_mut_slice(&mut self) -> &mut [Self::Entry];
}
/// A wrapper for [`FamStruct`](trait.FamStruct.html).
///
/// It helps in treating a [`FamStruct`](trait.FamStruct.html) similarly to an actual `Vec`.
#[derive(Debug)]
pub struct FamStructWrapper<T: Default + FamStruct> {
// This variable holds the FamStruct structure. We use a `Vec<T>` to make the allocation
// large enough while still being aligned for `T`. Only the first element of `Vec<T>`
// will actually be used as a `T`. The remaining memory in the `Vec<T>` is for `entries`,
// which must be contiguous. Since the entries are of type `FamStruct::Entry` we must
// be careful to convert the desired capacity of the `FamStructWrapper`
// from `FamStruct::Entry` to `T` when reserving or releasing memory.
mem_allocator: Vec<T>,
}
impl<T: Default + FamStruct> FamStructWrapper<T> {
/// Convert FAM len to `mem_allocator` len.
///
/// Get the capacity required by mem_allocator in order to hold
/// the provided number of [`FamStruct::Entry`](trait.FamStruct.html#associatedtype.Entry).
fn mem_allocator_len(fam_len: usize) -> usize {
let wrapper_size_in_bytes = size_of::<T>() + fam_len * size_of::<T::Entry>();
(wrapper_size_in_bytes + size_of::<T>() - 1) / size_of::<T>()
}
/// Convert `mem_allocator` len to FAM len.
///
/// Get the number of elements of type
/// [`FamStruct::Entry`](trait.FamStruct.html#associatedtype.Entry)
/// that fit in a mem_allocator of provided len.
fn fam_len(mem_allocator_len: usize) -> usize {
if mem_allocator_len == 0 {
return 0;
}
let array_size_in_bytes = (mem_allocator_len - 1) * size_of::<T>();
array_size_in_bytes / size_of::<T::Entry>()
}
/// Create a new FamStructWrapper with `num_elements` elements.
///
/// The elements will be zero-initialized. The type of the elements will be
/// [`FamStruct::Entry`](trait.FamStruct.html#associatedtype.Entry).
///
/// # Arguments
///
/// * `num_elements` - The number of elements in the FamStructWrapper.
///
/// # Errors
///
/// When `num_elements` is greater than the max possible len, it returns
/// `Error::SizeLimitExceeded`.
pub fn new(num_elements: usize) -> Result<FamStructWrapper<T>, Error> {
if num_elements > T::max_len() {
return Err(Error::SizeLimitExceeded);
}
let required_mem_allocator_capacity =
FamStructWrapper::<T>::mem_allocator_len(num_elements);
let mut mem_allocator = Vec::with_capacity(required_mem_allocator_capacity);
mem_allocator.push(T::default());
for _ in 1..required_mem_allocator_capacity {
// SAFETY: Safe as long T follows the requirements of being POD.
mem_allocator.push(unsafe { mem::zeroed() })
}
mem_allocator[0].set_len(num_elements);
Ok(FamStructWrapper { mem_allocator })
}
/// Create a new FamStructWrapper from a slice of elements.
///
/// # Arguments
///
/// * `entries` - The slice of [`FamStruct::Entry`](trait.FamStruct.html#associatedtype.Entry)
/// entries.
///
/// # Errors
///
/// When the size of `entries` is greater than the max possible len, it returns
/// `Error::SizeLimitExceeded`.
pub fn from_entries(entries: &[T::Entry]) -> Result<FamStructWrapper<T>, Error> {
let mut adapter = FamStructWrapper::<T>::new(entries.len())?;
{
let wrapper_entries = adapter.as_mut_fam_struct().as_mut_slice();
wrapper_entries.copy_from_slice(entries);
}
Ok(adapter)
}
/// Create a new FamStructWrapper from the raw content represented as `Vec<T>`.
///
/// Sometimes we already have the raw content of an FAM struct represented as `Vec<T>`,
/// and want to use the FamStructWrapper as accessors.
///
/// # Arguments
///
/// * `content` - The raw content represented as `Vec[T]`.
///
/// # Safety
///
/// This function is unsafe because the caller needs to ensure that the raw content is
/// correctly layed out.
pub unsafe fn from_raw(content: Vec<T>) -> Self {
FamStructWrapper {
mem_allocator: content,
}
}
/// Consume the FamStructWrapper and return the raw content as `Vec<T>`.
pub fn into_raw(self) -> Vec<T> {
self.mem_allocator
}
/// Get a reference to the actual [`FamStruct`](trait.FamStruct.html) instance.
pub fn as_fam_struct_ref(&self) -> &T {
&self.mem_allocator[0]
}
/// Get a mut reference to the actual [`FamStruct`](trait.FamStruct.html) instance.
pub fn as_mut_fam_struct(&mut self) -> &mut T {
&mut self.mem_allocator[0]
}
/// Get a pointer to the [`FamStruct`](trait.FamStruct.html) instance.
///
/// The caller must ensure that the fam_struct outlives the pointer this
/// function returns, or else it will end up pointing to garbage.
///
/// Modifying the container referenced by this pointer may cause its buffer
/// to be reallocated, which would also make any pointers to it invalid.
pub fn as_fam_struct_ptr(&self) -> *const T {
self.as_fam_struct_ref()
}
/// Get a mutable pointer to the [`FamStruct`](trait.FamStruct.html) instance.
///
/// The caller must ensure that the fam_struct outlives the pointer this
/// function returns, or else it will end up pointing to garbage.
///
/// Modifying the container referenced by this pointer may cause its buffer
/// to be reallocated, which would also make any pointers to it invalid.
pub fn as_mut_fam_struct_ptr(&mut self) -> *mut T {
self.as_mut_fam_struct()
}
/// Get the elements slice.
pub fn as_slice(&self) -> &[T::Entry] {
self.as_fam_struct_ref().as_slice()
}
/// Get the mutable elements slice.
pub fn as_mut_slice(&mut self) -> &mut [T::Entry] {
self.as_mut_fam_struct().as_mut_slice()
}
/// Get the number of elements of type `FamStruct::Entry` currently in the vec.
fn len(&self) -> usize {
self.as_fam_struct_ref().len()
}
/// Get the capacity of the `FamStructWrapper`
///
/// The capacity is measured in elements of type `FamStruct::Entry`.
fn capacity(&self) -> usize {
FamStructWrapper::<T>::fam_len(self.mem_allocator.capacity())
}
/// Reserve additional capacity.
///
/// Reserve capacity for at least `additional` more
/// [`FamStruct::Entry`](trait.FamStruct.html#associatedtype.Entry) elements.
///
/// If the capacity is already reserved, this method doesn't do anything.
/// If not this will trigger a reallocation of the underlying buffer.
fn reserve(&mut self, additional: usize) {
let desired_capacity = self.len() + additional;
if desired_capacity <= self.capacity() {
return;
}
let current_mem_allocator_len = self.mem_allocator.len();
let required_mem_allocator_len = FamStructWrapper::<T>::mem_allocator_len(desired_capacity);
let additional_mem_allocator_len = required_mem_allocator_len - current_mem_allocator_len;
self.mem_allocator.reserve(additional_mem_allocator_len);
}
/// Update the length of the FamStructWrapper.
///
/// The length of `self` will be updated to the specified value.
/// The length of the `T` structure and of `self.mem_allocator` will be updated accordingly.
/// If the len is increased additional capacity will be reserved.
/// If the len is decreased the unnecessary memory will be deallocated.
///
/// This method might trigger reallocations of the underlying buffer.
///
/// # Errors
///
/// When len is greater than the max possible len it returns Error::SizeLimitExceeded.
fn set_len(&mut self, len: usize) -> Result<(), Error> {
let additional_elements: isize = len as isize - self.len() as isize;
// If len == self.len there's nothing to do.
if additional_elements == 0 {
return Ok(());
}
// If the len needs to be increased:
if additional_elements > 0 {
// Check if the new len is valid.
if len > T::max_len() {
return Err(Error::SizeLimitExceeded);
}
// Reserve additional capacity.
self.reserve(additional_elements as usize);
}
let current_mem_allocator_len = self.mem_allocator.len();
let required_mem_allocator_len = FamStructWrapper::<T>::mem_allocator_len(len);
// Update the len of the `mem_allocator`.
// SAFETY: This is safe since enough capacity has been reserved.
unsafe {
self.mem_allocator.set_len(required_mem_allocator_len);
}
// Zero-initialize the additional elements if any.
for i in current_mem_allocator_len..required_mem_allocator_len {
// SAFETY: Safe as long as the trait is only implemented for POD. This is a requirement
// for the trait implementation.
self.mem_allocator[i] = unsafe { mem::zeroed() }
}
// Update the len of the underlying `FamStruct`.
self.as_mut_fam_struct().set_len(len);
// If the len needs to be decreased, deallocate unnecessary memory
if additional_elements < 0 {
self.mem_allocator.shrink_to_fit();
}
Ok(())
}
/// Append an element.
///
/// # Arguments
///
/// * `entry` - The element that will be appended to the end of the collection.
///
/// # Errors
///
/// When len is already equal to max possible len it returns Error::SizeLimitExceeded.
pub fn push(&mut self, entry: T::Entry) -> Result<(), Error> {
let new_len = self.len() + 1;
self.set_len(new_len)?;
self.as_mut_slice()[new_len - 1] = entry;
Ok(())
}
/// Retain only the elements specified by the predicate.
///
/// # Arguments
///
/// * `f` - The function used to evaluate whether an entry will be kept or not.
/// When `f` returns `true` the entry is kept.
pub fn retain<P>(&mut self, mut f: P)
where
P: FnMut(&T::Entry) -> bool,
{
let mut num_kept_entries = 0;
{
let entries = self.as_mut_slice();
for entry_idx in 0..entries.len() {
let keep = f(&entries[entry_idx]);
if keep {
entries[num_kept_entries] = entries[entry_idx];
num_kept_entries += 1;
}
}
}
// This is safe since this method is not increasing the len
self.set_len(num_kept_entries).expect("invalid length");
}
}
impl<T: Default + FamStruct + PartialEq> PartialEq for FamStructWrapper<T> {
fn eq(&self, other: &FamStructWrapper<T>) -> bool {
self.as_fam_struct_ref() == other.as_fam_struct_ref() && self.as_slice() == other.as_slice()
}
}
impl<T: Default + FamStruct> Clone for FamStructWrapper<T> {
fn clone(&self) -> Self {
// The number of entries (self.as_slice().len()) can't be > T::max_len() since `self` is a
// valid `FamStructWrapper`.
let required_mem_allocator_capacity =
FamStructWrapper::<T>::mem_allocator_len(self.as_slice().len());
let mut mem_allocator = Vec::with_capacity(required_mem_allocator_capacity);
// SAFETY: This is safe as long as the requirements for the `FamStruct` trait to be safe
// are met (the implementing type and the entries elements are POD, therefore `Copy`, so
// memory safety can't be violated by the ownership of `fam_struct`). It is also safe
// because we're trying to read a T from a `&T` that is pointing to a properly initialized
// and aligned T.
unsafe {
let fam_struct: T = std::ptr::read(self.as_fam_struct_ref());
mem_allocator.push(fam_struct);
}
for _ in 1..required_mem_allocator_capacity {
mem_allocator.push(
// SAFETY: This is safe as long as T respects the FamStruct trait and is a POD.
unsafe { mem::zeroed() },
)
}
let mut adapter = FamStructWrapper { mem_allocator };
{
let wrapper_entries = adapter.as_mut_fam_struct().as_mut_slice();
wrapper_entries.copy_from_slice(self.as_slice());
}
adapter
}
}
impl<T: Default + FamStruct> From<Vec<T>> for FamStructWrapper<T> {
fn from(vec: Vec<T>) -> Self {
FamStructWrapper { mem_allocator: vec }
}
}
#[cfg(feature = "with-serde")]
impl<T: Default + FamStruct + Serialize> Serialize for FamStructWrapper<T>
where
<T as FamStruct>::Entry: serde::Serialize,
{
fn serialize<S>(&self, serializer: S) -> std::result::Result<S::Ok, S::Error>
where
S: Serializer,
{
let mut s = serializer.serialize_tuple(2)?;
s.serialize_element(self.as_fam_struct_ref())?;
s.serialize_element(self.as_slice())?;
s.end()
}
}
#[cfg(feature = "with-serde")]
impl<'de, T: Default + FamStruct + Deserialize<'de>> Deserialize<'de> for FamStructWrapper<T>
where
<T as FamStruct>::Entry: std::marker::Copy + serde::Deserialize<'de>,
{
fn deserialize<D>(deserializer: D) -> std::result::Result<Self, D::Error>
where
D: Deserializer<'de>,
{
struct FamStructWrapperVisitor<X> {
dummy: PhantomData<X>,
}
impl<'de, X: Default + FamStruct + Deserialize<'de>> Visitor<'de> for FamStructWrapperVisitor<X>
where
<X as FamStruct>::Entry: std::marker::Copy + serde::Deserialize<'de>,
{
type Value = FamStructWrapper<X>;
fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
formatter.write_str("FamStructWrapper")
}
fn visit_seq<V>(self, mut seq: V) -> Result<FamStructWrapper<X>, V::Error>
where
V: SeqAccess<'de>,
{
use serde::de::Error;
let header = seq
.next_element()?
.ok_or_else(|| de::Error::invalid_length(0, &self))?;
let entries: Vec<X::Entry> = seq
.next_element()?
.ok_or_else(|| de::Error::invalid_length(1, &self))?;
let mut result: Self::Value = FamStructWrapper::from_entries(entries.as_slice())
.map_err(|e| V::Error::custom(format!("{:?}", e)))?;
result.mem_allocator[0] = header;
Ok(result)
}
}
deserializer.deserialize_tuple(2, FamStructWrapperVisitor { dummy: PhantomData })
}
}
/// Generate `FamStruct` implementation for structs with flexible array member.
#[macro_export]
macro_rules! generate_fam_struct_impl {
($struct_type: ty, $entry_type: ty, $entries_name: ident,
$field_type: ty, $field_name: ident, $max: expr) => {
unsafe impl FamStruct for $struct_type {
type Entry = $entry_type;
fn len(&self) -> usize {
self.$field_name as usize
}
fn set_len(&mut self, len: usize) {
self.$field_name = len as $field_type;
}
fn max_len() -> usize {
$max
}
fn as_slice(&self) -> &[<Self as FamStruct>::Entry] {
let len = self.len();
unsafe { self.$entries_name.as_slice(len) }
}
fn as_mut_slice(&mut self) -> &mut [<Self as FamStruct>::Entry] {
let len = self.len();
unsafe { self.$entries_name.as_mut_slice(len) }
}
}
};
}
#[cfg(test)]
mod tests {
#![allow(clippy::undocumented_unsafe_blocks)]
#[cfg(feature = "with-serde")]
use serde_derive::{Deserialize, Serialize};
use super::*;
const MAX_LEN: usize = 100;
#[repr(C)]
#[derive(Default, PartialEq, Eq)]
pub struct __IncompleteArrayField<T>(::std::marker::PhantomData<T>, [T; 0]);
impl<T> __IncompleteArrayField<T> {
#[inline]
pub fn new() -> Self {
__IncompleteArrayField(::std::marker::PhantomData, [])
}
#[inline]
pub unsafe fn as_ptr(&self) -> *const T {
self as *const __IncompleteArrayField<T> as *const T
}
#[inline]
pub unsafe fn as_mut_ptr(&mut self) -> *mut T {
self as *mut __IncompleteArrayField<T> as *mut T
}
#[inline]
pub unsafe fn as_slice(&self, len: usize) -> &[T] {
::std::slice::from_raw_parts(self.as_ptr(), len)
}
#[inline]
pub unsafe fn as_mut_slice(&mut self, len: usize) -> &mut [T] {
::std::slice::from_raw_parts_mut(self.as_mut_ptr(), len)
}
}
#[cfg(feature = "with-serde")]
impl<T> Serialize for __IncompleteArrayField<T> {
fn serialize<S>(&self, serializer: S) -> std::result::Result<S::Ok, S::Error>
where
S: Serializer,
{
[0u8; 0].serialize(serializer)
}
}
#[cfg(feature = "with-serde")]
impl<'de, T> Deserialize<'de> for __IncompleteArrayField<T> {
fn deserialize<D>(_: D) -> std::result::Result<Self, D::Error>
where
D: Deserializer<'de>,
{
Ok(__IncompleteArrayField::new())
}
}
#[repr(C)]
#[derive(Default, PartialEq)]
struct MockFamStruct {
pub len: u32,
pub padding: u32,
pub entries: __IncompleteArrayField<u32>,
}
generate_fam_struct_impl!(MockFamStruct, u32, entries, u32, len, 100);
type MockFamStructWrapper = FamStructWrapper<MockFamStruct>;
const ENTRIES_OFFSET: usize = 2;
const FAM_LEN_TO_MEM_ALLOCATOR_LEN: &[(usize, usize)] = &[
(0, 1),
(1, 2),
(2, 2),
(3, 3),
(4, 3),
(5, 4),
(10, 6),
(50, 26),
(100, 51),
];
const MEM_ALLOCATOR_LEN_TO_FAM_LEN: &[(usize, usize)] = &[
(0, 0),
(1, 0),
(2, 2),
(3, 4),
(4, 6),
(5, 8),
(10, 18),
(50, 98),
(100, 198),
];
#[test]
fn test_mem_allocator_len() {
for pair in FAM_LEN_TO_MEM_ALLOCATOR_LEN {
let fam_len = pair.0;
let mem_allocator_len = pair.1;
assert_eq!(
mem_allocator_len,
MockFamStructWrapper::mem_allocator_len(fam_len)
);
}
}
#[test]
fn test_wrapper_len() {
for pair in MEM_ALLOCATOR_LEN_TO_FAM_LEN {
let mem_allocator_len = pair.0;
let fam_len = pair.1;
assert_eq!(fam_len, MockFamStructWrapper::fam_len(mem_allocator_len));
}
}
#[test]
fn test_new() {
let num_entries = 10;
let adapter = MockFamStructWrapper::new(num_entries).unwrap();
assert_eq!(num_entries, adapter.capacity());
let u32_slice = unsafe {
std::slice::from_raw_parts(
adapter.as_fam_struct_ptr() as *const u32,
num_entries + ENTRIES_OFFSET,
)
};
assert_eq!(num_entries, u32_slice[0] as usize);
for entry in u32_slice[1..].iter() {
assert_eq!(*entry, 0);
}
// It's okay to create a `FamStructWrapper` with the maximum allowed number of entries.
let adapter = MockFamStructWrapper::new(MockFamStruct::max_len()).unwrap();
assert_eq!(MockFamStruct::max_len(), adapter.capacity());
assert!(matches!(
MockFamStructWrapper::new(MockFamStruct::max_len() + 1),
Err(Error::SizeLimitExceeded)
));
}
#[test]
fn test_from_entries() {
let num_entries: usize = 10;
let mut entries = Vec::new();
for i in 0..num_entries {
entries.push(i as u32);
}
let adapter = MockFamStructWrapper::from_entries(entries.as_slice()).unwrap();
let u32_slice = unsafe {
std::slice::from_raw_parts(
adapter.as_fam_struct_ptr() as *const u32,
num_entries + ENTRIES_OFFSET,
)
};
assert_eq!(num_entries, u32_slice[0] as usize);
for (i, &value) in entries.iter().enumerate().take(num_entries) {
assert_eq!(adapter.as_slice()[i], value);
}
let mut entries = Vec::new();
for i in 0..MockFamStruct::max_len() + 1 {
entries.push(i as u32);
}
// Can't create a `FamStructWrapper` with a number of entries > MockFamStruct::max_len().
assert!(matches!(
MockFamStructWrapper::from_entries(entries.as_slice()),
Err(Error::SizeLimitExceeded)
));
}
#[test]
fn test_entries_slice() {
let num_entries = 10;
let mut adapter = MockFamStructWrapper::new(num_entries).unwrap();
let expected_slice = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
{
let mut_entries_slice = adapter.as_mut_slice();
mut_entries_slice.copy_from_slice(expected_slice);
}
let u32_slice = unsafe {
std::slice::from_raw_parts(
adapter.as_fam_struct_ptr() as *const u32,
num_entries + ENTRIES_OFFSET,
)
};
assert_eq!(expected_slice, &u32_slice[ENTRIES_OFFSET..]);
assert_eq!(expected_slice, adapter.as_slice());
}
#[test]
fn test_reserve() {
let mut adapter = MockFamStructWrapper::new(0).unwrap();
// test that the right capacity is reserved
for pair in FAM_LEN_TO_MEM_ALLOCATOR_LEN {
let num_elements = pair.0;
let required_mem_allocator_len = pair.1;
adapter.reserve(num_elements);
assert!(adapter.mem_allocator.capacity() >= required_mem_allocator_len);
assert_eq!(0, adapter.len());
assert!(adapter.capacity() >= num_elements);
}
// test that when the capacity is already reserved, the method doesn't do anything
let current_capacity = adapter.capacity();
adapter.reserve(current_capacity - 1);
assert_eq!(current_capacity, adapter.capacity());
}
#[test]
fn test_set_len() {
let mut desired_len = 0;
let mut adapter = MockFamStructWrapper::new(desired_len).unwrap();
// keep initial len
assert!(adapter.set_len(desired_len).is_ok());
assert_eq!(adapter.len(), desired_len);
// increase len
desired_len = 10;
assert!(adapter.set_len(desired_len).is_ok());
// check that the len has been increased and zero-initialized elements have been added
assert_eq!(adapter.len(), desired_len);
for element in adapter.as_slice() {
assert_eq!(*element, 0_u32);
}
// decrease len
desired_len = 5;
assert!(adapter.set_len(desired_len).is_ok());
assert_eq!(adapter.len(), desired_len);
}
#[test]
fn test_push() {
let mut adapter = MockFamStructWrapper::new(0).unwrap();
for i in 0..MAX_LEN {
assert!(adapter.push(i as u32).is_ok());
assert_eq!(adapter.as_slice()[i], i as u32);
assert_eq!(adapter.len(), i + 1);
assert!(
adapter.mem_allocator.capacity() >= MockFamStructWrapper::mem_allocator_len(i + 1)
);
}
assert!(adapter.push(0).is_err());
}
#[test]
fn test_retain() {
let mut adapter = MockFamStructWrapper::new(0).unwrap();
let mut num_retained_entries = 0;
for i in 0..MAX_LEN {
assert!(adapter.push(i as u32).is_ok());
if i % 2 == 0 {
num_retained_entries += 1;
}
}
adapter.retain(|entry| entry % 2 == 0);
for entry in adapter.as_slice().iter() {
assert_eq!(0, entry % 2);
}
assert_eq!(adapter.len(), num_retained_entries);
assert!(
adapter.mem_allocator.capacity()
>= MockFamStructWrapper::mem_allocator_len(num_retained_entries)
);
}
#[test]
fn test_partial_eq() {
let mut wrapper_1 = MockFamStructWrapper::new(0).unwrap();
let mut wrapper_2 = MockFamStructWrapper::new(0).unwrap();
let mut wrapper_3 = MockFamStructWrapper::new(0).unwrap();
for i in 0..MAX_LEN {
assert!(wrapper_1.push(i as u32).is_ok());
assert!(wrapper_2.push(i as u32).is_ok());
assert!(wrapper_3.push(0).is_ok());
}
assert!(wrapper_1 == wrapper_2);
assert!(wrapper_1 != wrapper_3);
}
#[test]
fn test_clone() {
let mut adapter = MockFamStructWrapper::new(0).unwrap();
for i in 0..MAX_LEN {
assert!(adapter.push(i as u32).is_ok());
}
assert!(adapter == adapter.clone());
}
#[test]
fn test_raw_content() {
let data = vec![
MockFamStruct {
len: 2,
padding: 5,
entries: __IncompleteArrayField::new(),
},
MockFamStruct {
len: 0xA5,
padding: 0x1e,
entries: __IncompleteArrayField::new(),
},
];
let mut wrapper = unsafe { MockFamStructWrapper::from_raw(data) };
{
let payload = wrapper.as_slice();
assert_eq!(payload[0], 0xA5);
assert_eq!(payload[1], 0x1e);
}
assert_eq!(wrapper.as_mut_fam_struct().padding, 5);
let data = wrapper.into_raw();
assert_eq!(data[0].len, 2);
assert_eq!(data[0].padding, 5);
}
#[cfg(feature = "with-serde")]
#[test]
fn test_ser_deser() {
#[repr(C)]
#[derive(Default, PartialEq)]
#[cfg_attr(feature = "with-serde", derive(Deserialize, Serialize))]
struct Message {
pub len: u32,
pub padding: u32,
pub value: u32,
#[cfg_attr(feature = "with-serde", serde(skip))]
pub entries: __IncompleteArrayField<u32>,
}
generate_fam_struct_impl!(Message, u32, entries, u32, len, 100);
type MessageFamStructWrapper = FamStructWrapper<Message>;
let data = vec![
Message {
len: 2,
padding: 0,
value: 42,
entries: __IncompleteArrayField::new(),
},
Message {
len: 0xA5,
padding: 0x1e,
value: 0,
entries: __IncompleteArrayField::new(),
},
];
let wrapper = unsafe { MessageFamStructWrapper::from_raw(data) };
let data_ser = serde_json::to_string(&wrapper).unwrap();
assert_eq!(
data_ser,
"[{\"len\":2,\"padding\":0,\"value\":42},[165,30]]"
);
let data_deser =
serde_json::from_str::<MessageFamStructWrapper>(data_ser.as_str()).unwrap();
assert!(wrapper.eq(&data_deser));
let bad_data_ser = r#"{"foo": "bar"}"#;
assert!(serde_json::from_str::<MessageFamStructWrapper>(bad_data_ser).is_err());
#[repr(C)]
#[derive(Default)]
#[cfg_attr(feature = "with-serde", derive(Deserialize, Serialize))]
struct Message2 {
pub len: u32,
pub padding: u32,
pub value: u32,
#[cfg_attr(feature = "with-serde", serde(skip))]
pub entries: __IncompleteArrayField<u32>,
}
// Maximum number of entries = 1, so the deserialization should fail because of this reason.
generate_fam_struct_impl!(Message2, u32, entries, u32, len, 1);
type Message2FamStructWrapper = FamStructWrapper<Message2>;
assert!(serde_json::from_str::<Message2FamStructWrapper>(data_ser.as_str()).is_err());
}
#[test]
fn test_clone_multiple_fields() {
#[derive(Default, PartialEq)]
#[repr(C)]
struct Foo {
index: u32,
length: u16,
flags: u32,
entries: __IncompleteArrayField<u32>,
}
generate_fam_struct_impl!(Foo, u32, entries, u16, length, 100);
type FooFamStructWrapper = FamStructWrapper<Foo>;
let mut wrapper = FooFamStructWrapper::new(0).unwrap();
wrapper.as_mut_fam_struct().index = 1;
wrapper.as_mut_fam_struct().flags = 2;
wrapper.as_mut_fam_struct().length = 3;
wrapper.push(3).unwrap();
wrapper.push(14).unwrap();
assert_eq!(wrapper.as_slice().len(), 3 + 2);
assert_eq!(wrapper.as_slice()[3], 3);
assert_eq!(wrapper.as_slice()[3 + 1], 14);
let mut wrapper2 = wrapper.clone();
assert_eq!(
wrapper.as_mut_fam_struct().index,
wrapper2.as_mut_fam_struct().index
);
assert_eq!(
wrapper.as_mut_fam_struct().length,
wrapper2.as_mut_fam_struct().length
);
assert_eq!(
wrapper.as_mut_fam_struct().flags,
wrapper2.as_mut_fam_struct().flags
);
assert_eq!(wrapper.as_slice(), wrapper2.as_slice());
assert_eq!(
wrapper2.as_slice().len(),
wrapper2.as_mut_fam_struct().length as usize
);
assert!(wrapper == wrapper2);
wrapper.as_mut_fam_struct().index = 3;
assert!(wrapper != wrapper2);
wrapper.as_mut_fam_struct().length = 7;
assert!(wrapper != wrapper2);
wrapper.push(1).unwrap();
assert_eq!(wrapper.as_mut_fam_struct().length, 8);
assert!(wrapper != wrapper2);
let mut wrapper2 = wrapper.clone();
assert!(wrapper == wrapper2);
// Dropping the original variable should not affect its clone.
drop(wrapper);
assert_eq!(wrapper2.as_mut_fam_struct().index, 3);
assert_eq!(wrapper2.as_mut_fam_struct().length, 8);
assert_eq!(wrapper2.as_mut_fam_struct().flags, 2);
assert_eq!(wrapper2.as_slice(), [0, 0, 0, 3, 14, 0, 0, 1]);
}
}