1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
//! Shared algorithms and utilities for parsing integers.
//!
//! These allow implementations of partial and complete parsers
//! using a single code-path via macros.
//!
//! This looks relatively, complex, but it's quite simple. Almost all
//! of these branches are resolved at compile-time, so the resulting
//! code is quite small while handling all of the internal complexity.
//!
//! 1. Helpers to process ok and error results for both complete and partial
//! parsers. They have different APIs, and mixing the APIs leads to
//! substantial performance hits.
//! 2. Overflow checking on invalid digits for partial parsers, while
//! just returning invalid digits for complete parsers.
//! 3. A format-aware sign parser.
//! 4. Digit parsing algorithms which explicitly wrap on overflow, for no
//! additional overhead. This has major performance wins for **most**
//! real-world integers, so most valid input will be substantially faster.
//! 5. An algorithm to detect if overflow occurred. This is comprehensive,
//! and short-circuits for common cases.
//! 6. A parsing algorithm for unsigned integers, always producing positive
//! values. This avoids any unnecessary branching.
//! 7. Multi-digit optimizations for larger sizes.
#![doc(hidden)]
use lexical_util::format::NumberFormat;
use lexical_util::num::{as_cast, Integer, UnsignedInteger};
use lexical_util::step::max_step;
/// Return an error, returning the index and the error.
macro_rules! into_error {
($code:ident, $index:expr) => {
Err((lexical_util::error::Error::$code($index)))
};
}
/// Return an value for a complete parser.
macro_rules! into_ok_complete {
($value:expr, $index:expr) => {
Ok(as_cast($value))
};
}
/// Return an value and index for a partial parser.
macro_rules! into_ok_partial {
($value:expr, $index:expr) => {
Ok((as_cast($value), $index))
};
}
/// Return an error for a complete parser upon an invalid digit.
macro_rules! invalid_digit_complete {
(
$value:ident,
$iter:ident,
$format:ident,
$is_negative:ident,
$start_index:ident,
$t:ident,
$u:ident
) => {{
// Don't do any overflow checking here: we don't need it.
into_error!(InvalidDigit, $iter.cursor() - 1)
}};
}
/// Return a value for a partial parser upon an invalid digit.
/// This checks for numeric overflow, and returns the appropriate error.
macro_rules! invalid_digit_partial {
(
$value:ident,
$iter:ident,
$format:ident,
$is_negative:ident,
$start_index:ident,
$t:ident,
$u:ident
) => {{
let radix = NumberFormat::<{ $format }>::MANTISSA_RADIX;
let count = $iter.current_count() - $start_index - 1;
if is_overflow::<$t, $u, $format>($value, count, $is_negative) {
let min = min_step(radix, <$t as Integer>::BITS, <$t>::IS_SIGNED);
if <$t>::IS_SIGNED && $is_negative {
into_error!(Underflow, (count - 1).min(min + 1))
} else {
into_error!(Overflow, (count - 1).min(min + 1))
}
} else if <$t>::IS_SIGNED && $is_negative {
into_ok_partial!($value.wrapping_neg(), $iter.cursor() - 1)
} else {
into_ok_partial!($value, $iter.cursor() - 1)
}
}};
}
/// Parse the sign from the leading digits.
///
/// This routine does the following:
///
/// 1. Parses the sign digit.
/// 2. Handles if positive signs before integers are not allowed.
/// 3. Handles negative signs if the type is unsigned.
/// 4. Handles if the sign is required, but missing.
/// 5. Handles if the iterator is empty, before or after parsing the sign.
/// 6. Handles if the iterator has invalid, leading zeros.
///
/// Returns if the value is negative, or any values detected when
/// validating the input.
macro_rules! parse_sign {
($iter:ident, $format:ident) => {
// This works in all cases, and gets a few handy
// optimizations:
// 1. It minimizes branching: we either need to subslice
// or return an offset from the loop. We can't increment
// the iterator in the loop or it decimates performance.
//
// Using `iter.peek()` means we respect digit separators at
// the start of the number, when they're valid.
//
// All the other cases are removed at compile time.
// Note: the compiler isn't smart enough to realize that
// `Some(_) if !$format.call() =>` and `Some(_) =>` are
// mutually exclusive, so make sure we manually expand
// these cases.
match $iter.peek() {
Some(&b'+') if !$format.no_positive_mantissa_sign() => (false, 1),
Some(&b'+') if $format.no_positive_mantissa_sign() => {
return into_error!(InvalidPositiveSign, 0);
},
// Don't add the check for the negative sign here if unsigned,
// since it absolutely decimates performance. If it's for a
// partial parser, we'll simply get 0 digits parsed, like before.
// Complete parsers will still error, like before. That is, it's
// correct **enough**.
Some(&b'-') if T::IS_SIGNED => (true, 1),
Some(_) if $format.required_mantissa_sign() => return into_error!(MissingSign, 0),
_ => (false, 0),
}
};
}
/// Determine if the value has overflowed.
#[cfg_attr(not(feature = "compact"), inline)]
pub(super) fn is_overflow<T, U, const FORMAT: u128>(
value: U,
count: usize,
is_negative: bool,
) -> bool
where
T: Integer,
U: UnsignedInteger,
{
let format = NumberFormat::<{ FORMAT }> {};
let max = max_step(format.radix(), T::BITS, T::IS_SIGNED);
let radix: U = as_cast(format.radix());
let min_value: U = radix.pow(max as u32 - 1);
if T::IS_SIGNED {
// Signed type: have to deal with 2's complement.
let max_value: U = as_cast::<U, _>(T::MAX) + U::ONE;
if count > max
|| (count == max
&& (value < min_value || value > max_value || (!is_negative && value == max_value)))
{
// Must have overflowed, or wrapped.
// 1. Guaranteed overflow due to too many digits.
// 2. Guaranteed overflow due to wrap.
// 3. Guaranteed overflow since it's too large for the signed type.
// 4. Guaranteed overflow due to 2's complement.
return true;
}
} else if count > max || (count == max && value < min_value) {
// Must have overflowed: too many digits or wrapped.
return true;
}
false
}
/// Parse the value for the given type.
macro_rules! parse_value {
(
$iter:ident,
$is_negative:ident,
$format:ident,
$start_index:ident,
$t:ident,
$u:ident,
$parser:ident,
$invalid_digit:ident,
$into_ok:ident
) => {{
// Use a simple optimization: parse as an unsigned integer, using
// unsigned arithmetic , avoiding any branching in the initial stage.
// We can then validate the input based on the signed integer limits,
// and cast the value over, which is fast. Leads to substantial
// improvements due to decreased branching for all but `i8`.
let mut value = <$u>::ZERO;
let format = NumberFormat::<{ $format }> {};
$parser!(value, $iter, $format, $is_negative, $start_index, $t, $u, $invalid_digit);
let count = $iter.current_count() - $start_index;
if is_overflow::<$t, $u, $format>(value, count, $is_negative) {
let min = min_step(format.radix(), <$t as Integer>::BITS, <$t>::IS_SIGNED);
if <$t>::IS_SIGNED && $is_negative {
into_error!(Underflow, (count - 1).min(min + 1))
} else {
into_error!(Overflow, (count - 1).min(min + 1))
}
} else if <$t>::IS_SIGNED && $is_negative {
// Need to cast it to the signed type first, so we don't
// get an invalid representation for i128 if it's widened.
$into_ok!(as_cast::<$t, _>(value.wrapping_neg()), $iter.length())
} else {
$into_ok!(value, $iter.length())
}
}};
}
/// Parse a single digit at a time.
/// This has no multiple-digit optimizations.
#[rustfmt::skip]
macro_rules! parse_1digit {
(
$value:ident,
$iter:ident,
$format:ident,
$is_negative:ident,
$start_index:ident,
$t:ident,
$u:ident,
$invalid_digit:ident
) => {{
let format = NumberFormat::<{ $format }>;
let radix = NumberFormat::<{ $format }>::MANTISSA_RADIX;
// Do our slow parsing algorithm: 1 digit at a time.
while let Some(&c) = $iter.next() {
let digit = match char_to_digit_const(c, radix) {
Some(v) => v,
None => {
// Need to check for a base suffix, if so, return a valid value.
// We can't have a base suffix at the first value (need at least
// 1 digit).
let base_suffix = format.base_suffix();
if cfg!(feature = "format") && base_suffix != 0 && $iter.cursor() - $start_index > 1 {
let is_suffix = if format.case_sensitive_base_suffix() {
c == base_suffix
} else {
c.to_ascii_lowercase() == base_suffix.to_ascii_lowercase()
};
if is_suffix && $iter.is_done() {
// Break out of the loop, we've finished parsing.
break;
} else if is_suffix {
// Haven't finished parsing, so we're going to call
// invalid_digit!. Need to ensure we include the
// base suffix in that.
// SAFETY: safe since the iterator is not empty, as checked
// in `$iter.is_done()` above.
unsafe { $iter.step_unchecked() };
}
}
// Might have handled our base-prefix here.
return $invalid_digit!(
$value,
$iter,
$format,
$is_negative,
$start_index,
$t,
$u
);
},
};
$value = $value.wrapping_mul(as_cast(radix));
$value = $value.wrapping_add(as_cast(digit));
}
}};
}
/// Generic algorithm for both partial and complete parsers.
///
/// * `invalid_digit` - Behavior on finding an invalid digit.
/// * `into_ok` - Behavior when returning a valid value.
#[rustfmt::skip]
macro_rules! algorithm {
(
$bytes:ident,
$format:ident,
$t:ident,
$u:ident,
$parser:ident,
$invalid_digit:ident,
$into_ok:ident
) => {{
let format = NumberFormat::<{ $format }> {};
// WARNING:
// --------
// None of this code can be changed for optimization reasons.
// Do not change it without benchmarking every change.
// 1. You cannot use the NoSkipIterator in the loop,
// you must either return a subslice (indexing)
// or increment outside of the loop.
// Failing to do so leads to numerous more, unnecessary
// conditional move instructions, killing performance.
// 2. Return a 0 or 1 shift, and indexing unchecked outside
// of the loop is slightly faster.
// 3. Partial and complete parsers cannot be efficiently done
// together.
//
// If you try to refactor without carefully monitoring benchmarks or
// assembly generation, please log the number of wasted hours: so
// 16 hours so far.
// With `step_by_unchecked`, this is sufficiently optimized.
// Removes conditional paths, to, which simplifies maintenance.
// The skip version of the iterator automatically coalesces to
// the noskip iterator.
let mut byte = $bytes.bytes::<{ $format }>();
let mut iter = byte.integer_iter();
let (is_negative, shift) = parse_sign!(iter, format);
// SAFETY: safe since we shift at most one for a parsed sign byte.
unsafe { iter.step_by_unchecked(shift) };
if iter.is_done() {
return into_error!(Empty, shift);
}
// Skip any leading zeros.
let mut start_index = iter.cursor();
let zeros = iter.skip_zeros();
start_index += zeros;
// Now, check to see if we have a valid base prefix.
let base_prefix = format.base_prefix();
let mut is_prefix = false;
if cfg!(feature = "format") && base_prefix != 0 && zeros == 1 {
// Check to see if the next character is the base prefix.
// We must have a format like `0x`, `0d`, `0o`. Note:
if let Some(&c) = iter.peek() {
is_prefix = if format.case_sensitive_base_prefix() {
c == base_prefix
} else {
c.to_ascii_lowercase() == base_prefix.to_ascii_lowercase()
};
if is_prefix {
// SAFETY: safe since we `byte.len() >= 1`.
unsafe { iter.step_unchecked() };
if iter.is_done() {
return into_error!(Empty, iter.cursor());
} else {
start_index += 1;
}
}
}
}
// If we have a format that doesn't accept leading zeros,
// check if the next value is invalid. It's invalid if the
// first is 0, and the next is not a valid digit.
if cfg!(feature = "format") && !is_prefix && format.no_integer_leading_zeros() && zeros != 0 {
// Cannot have a base prefix and no leading zeros.
let index = iter.cursor() - zeros;
if zeros > 1 {
return into_error!(InvalidLeadingZeros, index);
}
match iter.peek().map(|&c| char_to_digit_const(c, format.radix())) {
// Valid digit, we have an invalid value.
Some(Some(_)) => return into_error!(InvalidLeadingZeros, index),
// Either not a digit that follows, or nothing follows.
_ => return $into_ok!(<$t>::ZERO, index),
};
}
// NOTE:
// Don't add optimizations for 128-bit integers.
// 128-bit multiplication is rather efficient, it's only division
// that's very slow. Any shortcut optimizations increasing branching,
// and even if parsing a 64-bit integer is marginally faster, it
// culminates in **way** slower performance overall for simple
// integers, and no improvement for large integers.
parse_value!(
iter,
is_negative,
$format,
start_index,
$t,
$u,
$parser,
$invalid_digit,
$into_ok
)
}};
}