1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
use crate::{mark_initialized, uninit_buf};
/// An extension trait that adds methods to `[T; N]`
///
/// This trait provides [`UnarrayArrayExt::map_result`] and [`UnarrayArrayExt::map_option`],
/// which provide functionality similar to the nightly-only [`array::try_map`]
pub trait UnarrayArrayExt<T, const N: usize> {
/// Maps an array, short-circuiting if any element produces an `Err`
///
/// ```
/// # use unarray::*;
/// let elements = ["123", "234", "345"];
/// let mapped = elements.map_result(|s| s.parse());
/// assert_eq!(mapped, Ok([123, 234, 345]));
/// ```
///
/// This function applies `f` to every element. If any element produces an `Err`, the function
/// immediately returns that error. Otherwise, it returns `Ok(result)` where `result` contains
/// the mapped elements in an array.
///
/// This function does not allocate space on the heap
///
/// For functions that return an `Option`, consider using [`UnarrayArrayExt::map_option`]
fn map_result<S, E>(self, f: impl FnMut(T) -> Result<S, E>) -> Result<[S; N], E>;
/// Maps an array, short-circuiting if any element produces a `None`
///
/// ```
/// # use unarray::*;
/// fn parse(s: &str) -> Option<bool> {
/// match s {
/// "true" => Some(true),
/// "false" => Some(false),
/// _ => None,
/// }
/// }
///
/// let elements = ["true", "false", "true"];
/// let mapped = elements.map_option(parse);
/// assert_eq!(mapped, Some([true, false, true]));
/// ```
///
/// This function applies `f` to every element. If any element produces `None`, the function
/// immediately returns `None`. Otherwise, it returns `Some(result)` where `result` contains
/// the mapped elements in an array.
///
/// This function does not allocate space on the heap
///
/// For functions that return an `Result`, consider using [`UnarrayArrayExt::map_result`]
fn map_option<S>(self, f: impl FnMut(T) -> Option<S>) -> Option<[S; N]>;
}
impl<T, const N: usize> UnarrayArrayExt<T, N> for [T; N] {
fn map_result<S, E>(self, mut f: impl FnMut(T) -> Result<S, E>) -> Result<[S; N], E> {
let mut result = uninit_buf();
// This is quaranteed to loop over every element (or panic), since both `result` and `self` have N elements
// If a panic occurs, uninitialized data is never dropped, since `MaybeUninit` wraps its
// contained data in `ManuallyDrop`
for (index, (item, slot)) in IntoIterator::into_iter(self).zip(&mut result).enumerate() {
match f(item) {
Ok(s) => slot.write(s),
Err(e) => {
// SAFETY:
// We have failed at `index` which is the `index + 1`th element, so the first
// `index` elements are safe to drop
result
.iter_mut()
.take(index)
.for_each(|slot| unsafe { slot.assume_init_drop() });
return Err(e);
}
};
}
// SAFETY:
// At this point in execution, we have iterated over all elements of `result`. If any
// errors were encountered, we would have already returned. So it's safe to remove the
// MaybeUninit wrapper
Ok(unsafe { mark_initialized(result) })
}
fn map_option<S>(self, mut f: impl FnMut(T) -> Option<S>) -> Option<[S; N]> {
// transform to a `Result`-returning function so we can avoid duplicating unsafe code
let actual_f = |t: T| -> Result<S, ()> { f(t).ok_or(()) };
let result: Result<[S; N], ()> = UnarrayArrayExt::map_result(self, actual_f);
match result {
Ok(result) => Some(result),
Err(()) => None,
}
}
}
#[cfg(test)]
mod tests {
use core::{
convert::TryInto,
sync::atomic::{AtomicUsize, Ordering},
};
use super::UnarrayArrayExt;
use crate::testing::array_strategy;
use proptest::prelude::*;
use test_strategy::proptest;
#[test]
fn test_map_option() {
let array = [1, 2, 3];
let result = array.map_option(|i| Some(i * 2)).unwrap();
assert_eq!(result, [2, 4, 6]);
}
#[test]
#[should_panic]
fn test_map_option_panic() {
let array = [1, 2, 3];
array.map_option(|i| {
if i > 2 {
panic!();
}
Some(i)
});
}
#[test]
fn test_map_result() {
let array = [1, 2, 3];
let result: Result<_, ()> = array.map_result(|i| Ok(i * 2));
assert_eq!(result.unwrap(), [2, 4, 6]);
}
#[test]
#[should_panic]
fn test_map_result_panic() {
let array = [1, 2, 3];
let _ = array.map_result(|i| -> Result<i32, ()> {
if i > 2 {
panic!();
}
Ok(i)
});
}
struct IncrementOnDrop<'a>(&'a AtomicUsize);
impl Drop for IncrementOnDrop<'_> {
fn drop(&mut self) {
self.0.fetch_add(1, Ordering::Relaxed);
}
}
#[test]
fn map_array_result_doesnt_leak() {
let drop_counter = 0.into();
// this will successfully create 3 structs, fail on the 4th, we expect 3 drops to be
// called, since the 4th may be in an inconsistent state
let _ = [0, 1, 2, 3, 4].map_result(|i| {
if i == 3 {
Err(())
} else {
Ok(IncrementOnDrop(&drop_counter))
}
});
assert_eq!(drop_counter.load(Ordering::Relaxed), 3);
}
#[test]
fn map_array_option_doesnt_leak() {
let drop_counter = 0.into();
// this will successfully create 3 structs, fail on the 4th, we expect 3 drops to be
// called, since the 4th may be in an inconsistent state
let _ = [0, 1, 2, 3, 4].map_option(|i| {
if i == 3 {
None
} else {
Some(IncrementOnDrop(&drop_counter))
}
});
assert_eq!(drop_counter.load(Ordering::Relaxed), 3);
}
const LEN: usize = 100;
#[proptest]
#[cfg_attr(miri, ignore)]
fn proptest_option_map(#[strategy(array_strategy::<LEN>())] array: [String; LEN]) {
let expected = array.iter().map(|s| s.len()).collect::<Vec<_>>();
let expected: [usize; LEN] = expected.try_into().unwrap();
let result = array.map_option(|s| Some(s.len()));
prop_assert_eq!(expected, result.unwrap());
}
#[proptest]
#[cfg_attr(miri, ignore)]
fn proptest_result_map(#[strategy(array_strategy::<LEN>())] array: [String; LEN]) {
let expected = array.iter().map(|s| s.len()).collect::<Vec<_>>();
let expected: [usize; LEN] = expected.try_into().unwrap();
let result: Result<_, ()> = array.map_result(|s| Ok(s.len()));
prop_assert_eq!(expected, result.unwrap());
}
}