1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
use darling::{ast::NestedMeta, Error as DarlingError, FromMeta};
use proc_macro::TokenStream;
use quote::ToTokens as _;
use syn::{
    parse::{Parse, ParseStream},
    punctuated::Punctuated,
    Attribute, Error, Field, Path, Token, Type, TypeArray, TypeGroup, TypeParen, TypePath, TypePtr,
    TypeReference, TypeSlice, TypeTuple,
};

/// Parsed form of a single rule in the `#[apply(...)]` attribute.
///
/// This parses tokens in the shape of `Type => Attribute`.
/// For example, `Option<String> => #[serde(default)]`.
struct AddAttributesRule {
    /// A type pattern determining the fields to which the attributes are applied.
    ty: Type,
    /// The attributes to apply.
    ///
    /// All attributes are appended to the list of existing field attributes.
    attrs: Vec<Attribute>,
}

impl Parse for AddAttributesRule {
    fn parse(input: ParseStream<'_>) -> Result<Self, Error> {
        let ty: Type = input.parse()?;
        input.parse::<Token![=>]>()?;
        let attr = Attribute::parse_outer(input)?;
        Ok(AddAttributesRule { ty, attrs: attr })
    }
}

/// Parsed form of the `#[apply(...)]` attribute.
///
/// The `apply` attribute takes a comma separated list of rules in the shape of `Type => Attribute`.
/// Each rule is stored as a [`AddAttributesRule`].
struct ApplyInput {
    metas: Vec<NestedMeta>,
    rules: Punctuated<AddAttributesRule, Token![,]>,
}

impl Parse for ApplyInput {
    fn parse(input: ParseStream<'_>) -> Result<Self, Error> {
        let mut metas: Vec<NestedMeta> = Vec::new();

        while input.peek2(Token![=]) && !input.peek2(Token![=>]) {
            let value = NestedMeta::parse(input)?;
            metas.push(value);
            if !input.peek(Token![,]) {
                break;
            }
            input.parse::<Token![,]>()?;
        }

        let rules: Punctuated<AddAttributesRule, Token![,]> =
            input.parse_terminated(AddAttributesRule::parse, Token![,])?;
        Ok(Self { metas, rules })
    }
}

pub fn apply(args: TokenStream, input: TokenStream) -> TokenStream {
    let args = syn::parse_macro_input!(args as ApplyInput);

    #[derive(FromMeta)]
    struct SerdeContainerOptions {
        #[darling(rename = "crate")]
        alt_crate_path: Option<Path>,
    }

    let container_options = match SerdeContainerOptions::from_list(&args.metas) {
        Ok(v) => v,
        Err(e) => {
            return TokenStream::from(e.write_errors());
        }
    };
    let serde_with_crate_path = container_options
        .alt_crate_path
        .unwrap_or_else(|| syn::parse_quote!(::serde_with));

    let res = match super::apply_function_to_struct_and_enum_fields_darling(
        input,
        &serde_with_crate_path,
        &prepare_apply_attribute_to_field(args),
    ) {
        Ok(res) => res,
        Err(err) => err.write_errors(),
    };
    TokenStream::from(res)
}

/// Create a function compatible with [`super::apply_function_to_struct_and_enum_fields`] based on [`ApplyInput`].
///
/// A single [`ApplyInput`] can apply to multiple field types.
/// To account for this a new function must be created to stay compatible with the function signature or [`super::apply_function_to_struct_and_enum_fields`].
fn prepare_apply_attribute_to_field(
    input: ApplyInput,
) -> impl Fn(&mut Field) -> Result<(), DarlingError> {
    move |field: &mut Field| {
        let has_skip_attr = super::field_has_attribute(field, "serde_with", "skip_apply");
        if has_skip_attr {
            return Ok(());
        }

        for matcher in input.rules.iter() {
            if ty_pattern_matches_ty(&matcher.ty, &field.ty) {
                field.attrs.extend(matcher.attrs.clone());
            }
        }
        Ok(())
    }
}

fn ty_pattern_matches_ty(ty_pattern: &Type, ty: &Type) -> bool {
    match (ty_pattern, ty) {
        // Groups are invisible groupings which can for example come from macro_rules expansion.
        // This can lead to a mismatch where the `ty` is "Group { Option<String> }" and the `ty_pattern` is "Option<String>".
        // To account for this we unwrap the group and compare the inner types.
        (
            Type::Group(TypeGroup {
                elem: ty_pattern, ..
            }),
            ty,
        ) => ty_pattern_matches_ty(ty_pattern, ty),
        (ty_pattern, Type::Group(TypeGroup { elem: ty, .. })) => {
            ty_pattern_matches_ty(ty_pattern, ty)
        }

        // Processing of the other types
        (
            Type::Array(TypeArray {
                elem: ty_pattern,
                len: len_pattern,
                ..
            }),
            Type::Array(TypeArray { elem: ty, len, .. }),
        ) => {
            let ty_match = ty_pattern_matches_ty(ty_pattern, ty);
            let len_match = len_pattern == len || len_pattern.to_token_stream().to_string() == "_";
            ty_match && len_match
        }
        (Type::BareFn(ty_pattern), Type::BareFn(ty)) => ty_pattern == ty,
        (Type::ImplTrait(ty_pattern), Type::ImplTrait(ty)) => ty_pattern == ty,
        (Type::Infer(_), _) => true,
        (Type::Macro(ty_pattern), Type::Macro(ty)) => ty_pattern == ty,
        (Type::Never(_), Type::Never(_)) => true,
        (
            Type::Paren(TypeParen {
                elem: ty_pattern, ..
            }),
            Type::Paren(TypeParen { elem: ty, .. }),
        ) => ty_pattern_matches_ty(ty_pattern, ty),
        (
            Type::Path(TypePath {
                qself: qself_pattern,
                path: path_pattern,
            }),
            Type::Path(TypePath { qself, path }),
        ) => {
            /// Compare two paths for relaxed equality.
            ///
            /// Two paths match if they are equal except for the path arguments.
            /// Path arguments are generics on types or functions.
            /// If the pattern has no argument, it can match with everything.
            /// If the pattern does have an argument, the other side must be equal.
            fn path_pattern_matches_path(path_pattern: &Path, path: &Path) -> bool {
                if path_pattern.leading_colon != path.leading_colon
                    || path_pattern.segments.len() != path.segments.len()
                {
                    return false;
                }
                // Both parts are equal length
                std::iter::zip(&path_pattern.segments, &path.segments).all(
                    |(path_pattern_segment, path_segment)| {
                        let ident_equal = path_pattern_segment.ident == path_segment.ident;
                        let args_match =
                            match (&path_pattern_segment.arguments, &path_segment.arguments) {
                                (syn::PathArguments::None, _) => true,
                                (
                                    syn::PathArguments::AngleBracketed(
                                        syn::AngleBracketedGenericArguments {
                                            args: args_pattern,
                                            ..
                                        },
                                    ),
                                    syn::PathArguments::AngleBracketed(
                                        syn::AngleBracketedGenericArguments { args, .. },
                                    ),
                                ) => {
                                    args_pattern.len() == args.len()
                                        && std::iter::zip(args_pattern, args).all(|(a, b)| {
                                            match (a, b) {
                                                (
                                                    syn::GenericArgument::Type(ty_pattern),
                                                    syn::GenericArgument::Type(ty),
                                                ) => ty_pattern_matches_ty(ty_pattern, ty),
                                                (a, b) => a == b,
                                            }
                                        })
                                }
                                (args_pattern, args) => args_pattern == args,
                            };
                        ident_equal && args_match
                    },
                )
            }
            qself_pattern == qself && path_pattern_matches_path(path_pattern, path)
        }
        (
            Type::Ptr(TypePtr {
                const_token: const_token_pattern,
                mutability: mutability_pattern,
                elem: ty_pattern,
                ..
            }),
            Type::Ptr(TypePtr {
                const_token,
                mutability,
                elem: ty,
                ..
            }),
        ) => {
            const_token_pattern == const_token
                && mutability_pattern == mutability
                && ty_pattern_matches_ty(ty_pattern, ty)
        }
        (
            Type::Reference(TypeReference {
                lifetime: lifetime_pattern,
                elem: ty_pattern,
                ..
            }),
            Type::Reference(TypeReference {
                lifetime, elem: ty, ..
            }),
        ) => {
            (lifetime_pattern.is_none() || lifetime_pattern == lifetime)
                && ty_pattern_matches_ty(ty_pattern, ty)
        }
        (
            Type::Slice(TypeSlice {
                elem: ty_pattern, ..
            }),
            Type::Slice(TypeSlice { elem: ty, .. }),
        ) => ty_pattern_matches_ty(ty_pattern, ty),
        (Type::TraitObject(ty_pattern), Type::TraitObject(ty)) => ty_pattern == ty,
        (
            Type::Tuple(TypeTuple {
                elems: ty_pattern, ..
            }),
            Type::Tuple(TypeTuple { elems: ty, .. }),
        ) => {
            ty_pattern.len() == ty.len()
                && std::iter::zip(ty_pattern, ty)
                    .all(|(ty_pattern, ty)| ty_pattern_matches_ty(ty_pattern, ty))
        }
        (Type::Verbatim(_), Type::Verbatim(_)) => false,
        _ => false,
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[track_caller]
    fn matches(ty_pattern: &str, ty: &str) -> bool {
        let ty_pattern = syn::parse_str(ty_pattern).unwrap();
        let ty = syn::parse_str(ty).unwrap();
        ty_pattern_matches_ty(&ty_pattern, &ty)
    }

    #[test]
    fn test_ty_generic() {
        assert!(matches("Option<u8>", "Option<u8>"));
        assert!(matches("Option", "Option<u8>"));
        assert!(!matches("Option<u8>", "Option<String>"));

        assert!(matches("BTreeMap<u8, u8>", "BTreeMap<u8, u8>"));
        assert!(matches("BTreeMap", "BTreeMap<u8, u8>"));
        assert!(!matches("BTreeMap<String, String>", "BTreeMap<u8, u8>"));
        assert!(matches("BTreeMap<_, _>", "BTreeMap<u8, u8>"));
        assert!(matches("BTreeMap<_, u8>", "BTreeMap<u8, u8>"));
        assert!(!matches("BTreeMap<String, _>", "BTreeMap<u8, u8>"));
    }

    #[test]
    fn test_array() {
        assert!(matches("[u8; 1]", "[u8; 1]"));
        assert!(matches("[_; 1]", "[u8; 1]"));
        assert!(matches("[u8; _]", "[u8; 1]"));
        assert!(matches("[u8; _]", "[u8; N]"));

        assert!(!matches("[u8; 1]", "[u8; 2]"));
        assert!(!matches("[u8; 1]", "[u8; _]"));
        assert!(!matches("[u8; 1]", "[String; 1]"));
    }

    #[test]
    fn test_reference() {
        assert!(matches("&str", "&str"));
        assert!(matches("&mut str", "&str"));
        assert!(matches("&str", "&mut str"));
        assert!(matches("&str", "&'a str"));
        assert!(matches("&str", "&'static str"));
        assert!(matches("&str", "&'static mut str"));

        assert!(matches("&'a str", "&'a str"));
        assert!(matches("&'a mut str", "&'a str"));

        assert!(!matches("&'b str", "&'a str"));
    }
}