1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
// Copyright (C) 2019 Alibaba Cloud Computing. All rights reserved.
//
// Portions Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
//
// Portions Copyright 2017 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE-BSD-3-Clause file.
//
// SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause
//! Traits to represent an address within an address space.
//!
//! Two traits are defined to represent an address within an address space:
//! - [`AddressValue`](trait.AddressValue.html): stores the raw value of an address. Typically
//! `u32`,`u64` or `usize` is used to store the raw value. But pointers, such as `*u8`, can't be used
//! because they don't implement the [`Add`](https://doc.rust-lang.org/std/ops/trait.Add.html) and
//! [`Sub`](https://doc.rust-lang.org/std/ops/trait.Sub.html) traits.
//! - [Address](trait.Address.html): encapsulates an [`AddressValue`](trait.AddressValue.html)
//! object and defines methods to access and manipulate it.
use std::cmp::{Eq, Ord, PartialEq, PartialOrd};
use std::fmt::Debug;
use std::ops::{Add, BitAnd, BitOr, Not, Sub};
/// Simple helper trait used to store a raw address value.
pub trait AddressValue {
/// Type of the raw address value.
type V: Copy
+ PartialEq
+ Eq
+ PartialOrd
+ Ord
+ Not<Output = Self::V>
+ Add<Output = Self::V>
+ Sub<Output = Self::V>
+ BitAnd<Output = Self::V>
+ BitOr<Output = Self::V>
+ Debug
+ From<u8>;
/// Return the value zero, coerced into the value type `Self::V`
fn zero() -> Self::V {
0u8.into()
}
/// Return the value zero, coerced into the value type `Self::V`
fn one() -> Self::V {
1u8.into()
}
}
/// Trait to represent an address within an address space.
///
/// To simplify the design and implementation, assume the same raw data type `(AddressValue::V)`
/// could be used to store address, size and offset for the address space. Thus the `Address` trait
/// could be used to manage address, size and offset. On the other hand, type aliases may be
/// defined to improve code readability.
///
/// One design rule is applied to the `Address` trait, namely that operators (+, -, &, | etc) are
/// not supported and it forces clients to explicitly invoke corresponding methods. But there are
/// always exceptions:
/// `Address` (BitAnd|BitOr) `AddressValue` are supported.
pub trait Address:
AddressValue
+ Sized
+ Default
+ Copy
+ Eq
+ PartialEq
+ Ord
+ PartialOrd
+ BitAnd<<Self as AddressValue>::V, Output = Self>
+ BitOr<<Self as AddressValue>::V, Output = Self>
{
/// Creates an address from a raw address value.
fn new(addr: Self::V) -> Self;
/// Returns the raw value of the address.
fn raw_value(&self) -> Self::V;
/// Returns the bitwise and of the address with the given mask.
fn mask(&self, mask: Self::V) -> Self::V {
self.raw_value() & mask
}
/// Computes the offset from this address to the given base address.
///
/// Returns `None` if there is underflow.
fn checked_offset_from(&self, base: Self) -> Option<Self::V>;
/// Computes the offset from this address to the given base address.
///
/// In the event of overflow, follows standard Rust behavior, i.e. panic in debug builds,
/// silently wrap in release builds.
///
/// Note that, unlike the `unchecked_*` methods in std, this method never invokes undefined
/// behavior.
/// # Examples
///
/// ```
/// # use vm_memory::{Address, GuestAddress};
/// #
/// let base = GuestAddress(0x100);
/// let addr = GuestAddress(0x150);
/// assert_eq!(addr.unchecked_offset_from(base), 0x50);
/// ```
fn unchecked_offset_from(&self, base: Self) -> Self::V {
self.raw_value() - base.raw_value()
}
/// Returns self, aligned to the given power of two.
fn checked_align_up(&self, power_of_two: Self::V) -> Option<Self> {
let mask = power_of_two - Self::one();
assert_ne!(power_of_two, Self::zero());
assert_eq!(power_of_two & mask, Self::zero());
self.checked_add(mask).map(|x| x & !mask)
}
/// Returns self, aligned to the given power of two.
/// Only use this when the result is guaranteed not to overflow.
fn unchecked_align_up(&self, power_of_two: Self::V) -> Self {
let mask = power_of_two - Self::one();
self.unchecked_add(mask) & !mask
}
/// Computes `self + other`, returning `None` if overflow occurred.
fn checked_add(&self, other: Self::V) -> Option<Self>;
/// Computes `self + other`.
///
/// Returns a tuple of the addition result along with a boolean indicating whether an arithmetic
/// overflow would occur. If an overflow would have occurred then the wrapped address
/// is returned.
fn overflowing_add(&self, other: Self::V) -> (Self, bool);
/// Computes `self + offset`.
///
/// In the event of overflow, follows standard Rust behavior, i.e. panic in debug builds,
/// silently wrap in release builds.
///
/// Note that, unlike the `unchecked_*` methods in std, this method never invokes undefined
/// behavior..
fn unchecked_add(&self, offset: Self::V) -> Self;
/// Subtracts two addresses, checking for underflow. If underflow happens, `None` is returned.
fn checked_sub(&self, other: Self::V) -> Option<Self>;
/// Computes `self - other`.
///
/// Returns a tuple of the subtraction result along with a boolean indicating whether an
/// arithmetic overflow would occur. If an overflow would have occurred then the wrapped
/// address is returned.
fn overflowing_sub(&self, other: Self::V) -> (Self, bool);
/// Computes `self - other`.
///
/// In the event of underflow, follows standard Rust behavior, i.e. panic in debug builds,
/// silently wrap in release builds.
///
/// Note that, unlike the `unchecked_*` methods in std, this method never invokes undefined
/// behavior.
fn unchecked_sub(&self, other: Self::V) -> Self;
}
macro_rules! impl_address_ops {
($T:ident, $V:ty) => {
impl AddressValue for $T {
type V = $V;
}
impl Address for $T {
fn new(value: $V) -> $T {
$T(value)
}
fn raw_value(&self) -> $V {
self.0
}
fn checked_offset_from(&self, base: $T) -> Option<$V> {
self.0.checked_sub(base.0)
}
fn checked_add(&self, other: $V) -> Option<$T> {
self.0.checked_add(other).map($T)
}
fn overflowing_add(&self, other: $V) -> ($T, bool) {
let (t, ovf) = self.0.overflowing_add(other);
($T(t), ovf)
}
fn unchecked_add(&self, offset: $V) -> $T {
$T(self.0 + offset)
}
fn checked_sub(&self, other: $V) -> Option<$T> {
self.0.checked_sub(other).map($T)
}
fn overflowing_sub(&self, other: $V) -> ($T, bool) {
let (t, ovf) = self.0.overflowing_sub(other);
($T(t), ovf)
}
fn unchecked_sub(&self, other: $V) -> $T {
$T(self.0 - other)
}
}
impl Default for $T {
fn default() -> $T {
Self::new(0 as $V)
}
}
impl BitAnd<$V> for $T {
type Output = $T;
fn bitand(self, other: $V) -> $T {
$T(self.0 & other)
}
}
impl BitOr<$V> for $T {
type Output = $T;
fn bitor(self, other: $V) -> $T {
$T(self.0 | other)
}
}
};
}
#[cfg(test)]
mod tests {
use super::*;
#[derive(Clone, Copy, Debug, Eq, PartialEq, Ord, PartialOrd)]
struct MockAddress(pub u64);
impl_address_ops!(MockAddress, u64);
#[test]
fn test_new() {
assert_eq!(MockAddress::new(0), MockAddress(0));
assert_eq!(MockAddress::new(std::u64::MAX), MockAddress(std::u64::MAX));
}
#[test]
fn test_offset_from() {
let base = MockAddress(0x100);
let addr = MockAddress(0x150);
assert_eq!(addr.unchecked_offset_from(base), 0x50u64);
assert_eq!(addr.checked_offset_from(base), Some(0x50u64));
assert_eq!(base.checked_offset_from(addr), None);
}
#[test]
fn test_equals() {
let a = MockAddress(0x300);
let b = MockAddress(0x300);
let c = MockAddress(0x301);
assert_eq!(a, MockAddress(a.raw_value()));
assert_eq!(a, b);
assert_eq!(b, a);
assert_ne!(a, c);
assert_ne!(c, a);
}
#[test]
fn test_cmp() {
let a = MockAddress(0x300);
let b = MockAddress(0x301);
assert!(a < b);
}
#[test]
fn test_checked_align_up() {
assert_eq!(
MockAddress::new(0x128).checked_align_up(8),
Some(MockAddress(0x128))
);
assert_eq!(
MockAddress::new(0x128).checked_align_up(16),
Some(MockAddress(0x130))
);
assert_eq!(
MockAddress::new(std::u64::MAX - 0x3fff).checked_align_up(0x10000),
None
);
}
#[test]
#[should_panic]
fn test_checked_align_up_invalid() {
let _ = MockAddress::new(0x128).checked_align_up(12);
}
#[test]
fn test_unchecked_align_up() {
assert_eq!(
MockAddress::new(0x128).unchecked_align_up(8),
MockAddress(0x128)
);
assert_eq!(
MockAddress::new(0x128).unchecked_align_up(16),
MockAddress(0x130)
);
}
#[test]
fn test_mask() {
let a = MockAddress(0x5050);
assert_eq!(MockAddress(0x5000), a & 0xff00u64);
assert_eq!(0x5000, a.mask(0xff00u64));
assert_eq!(MockAddress(0x5055), a | 0x0005u64);
}
fn check_add(a: u64, b: u64, expected_overflow: bool, expected_result: u64) {
assert_eq!(
(MockAddress(expected_result), expected_overflow),
MockAddress(a).overflowing_add(b)
);
if expected_overflow {
assert!(MockAddress(a).checked_add(b).is_none());
#[cfg(debug_assertions)]
assert!(std::panic::catch_unwind(|| MockAddress(a).unchecked_add(b)).is_err());
} else {
assert_eq!(
Some(MockAddress(expected_result)),
MockAddress(a).checked_add(b)
);
assert_eq!(
MockAddress(expected_result),
MockAddress(a).unchecked_add(b)
);
}
}
#[test]
fn test_add() {
// without overflow
// normal case
check_add(10, 10, false, 20);
// edge case
check_add(std::u64::MAX - 1, 1, false, std::u64::MAX);
// with overflow
check_add(std::u64::MAX, 1, true, 0);
}
fn check_sub(a: u64, b: u64, expected_overflow: bool, expected_result: u64) {
assert_eq!(
(MockAddress(expected_result), expected_overflow),
MockAddress(a).overflowing_sub(b)
);
if expected_overflow {
assert!(MockAddress(a).checked_sub(b).is_none());
assert!(MockAddress(a).checked_offset_from(MockAddress(b)).is_none());
#[cfg(debug_assertions)]
assert!(std::panic::catch_unwind(|| MockAddress(a).unchecked_sub(b)).is_err());
} else {
assert_eq!(
Some(MockAddress(expected_result)),
MockAddress(a).checked_sub(b)
);
assert_eq!(
Some(expected_result),
MockAddress(a).checked_offset_from(MockAddress(b))
);
assert_eq!(
MockAddress(expected_result),
MockAddress(a).unchecked_sub(b)
);
}
}
#[test]
fn test_sub() {
// without overflow
// normal case
check_sub(20, 10, false, 10);
// edge case
check_sub(1, 1, false, 0);
// with underflow
check_sub(0, 1, true, std::u64::MAX);
}
#[test]
fn test_default() {
assert_eq!(MockAddress::default(), MockAddress(0));
}
#[test]
fn test_bit_and() {
let a = MockAddress(0x0ff0);
assert_eq!(a & 0xf00f, MockAddress(0));
}
#[test]
fn test_bit_or() {
let a = MockAddress(0x0ff0);
assert_eq!(a | 0xf00f, MockAddress(0xffff));
}
}