1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
/*!
This module implements a generator which can be shared between threads.
You can create a basic generator with [`gen!`] and [`yield_!`].
[`gen!`]: macro.gen.html
```rust
# #[cfg(feature = "proc_macro")]
# fn feature_gate() {
# use genawaiter::{sync::gen, yield_};
#
let mut my_generator = gen!({
yield_!(10);
});
# my_generator.resume();
# }
```
If you need to reuse logic between multiple generators, you can define the logic with
[`sync_producer!`] and [`yield_!`], and instantiate generators with [`Gen::new`].
```rust
# #[cfg(feature = "proc_macro")]
# fn feature_gate() {
# use genawaiter::{sync::Gen, sync_producer as producer, yield_};
#
let my_producer = producer!({
yield_!(10);
});
let mut my_generator = Gen::new(my_producer);
# my_generator.resume();
# }
```
If you don't like macros, you can use the low-level API directly.
```rust
# use genawaiter::sync::{Co, Gen};
#
async fn my_producer(co: Co<u8>) {
co.yield_(10).await;
}
let mut my_generator = Gen::new(my_producer);
# my_generator.resume();
```
# Storing a generator in a `static`
In Rust, the type of static variables must be nameable, but the type of an `async fn` is
not nameable – `async fn`s always return `impl Future`. So, in order to store a
generator in a static, you'll need `dyn Future`, plus a layer of indirection. This crate
provides the [`GenBoxed`](type.GenBoxed.html) type alias with the
[`Gen::new_boxed`](type.GenBoxed.html#method.new_boxed) function to make this easier
(and to smooth out a rough corner in the type inference).
Additionally, as usual when dealing with statics in Rust, you'll need some form of
synchronization. Here is one possible pattern, using the [`once_cell`] crate.
[`once_cell`]: https://crates.io/crates/once_cell
```
# #[cfg(feature = "proc_macro")]
# fn feature_gate() {
use genawaiter::{sync::{Gen, GenBoxed}, sync_producer as producer, yield_};
use once_cell::sync::Lazy;
use std::sync::Mutex;
static INEFFICIENT_COUNTER: Lazy<Mutex<GenBoxed<i32>>> =
Lazy::new(|| Mutex::new(Gen::new_boxed(producer!({
let mut n = 0;
loop {
n += 1;
yield_!(n);
}
}))));
# }
```
# Examples
## Using `Iterator`
Generators implement `Iterator`, so you can use them in a for loop:
```rust
# #[cfg(feature = "proc_macro")]
# fn feature_gate() {
use genawaiter::{sync::gen, yield_};
let odds_under_ten = gen!({
let mut n = 1;
while n < 10 {
yield_!(n);
n += 2;
}
});
# let mut test = Vec::new();
for num in odds_under_ten {
println!("{}", num);
# test.push(num);
}
# assert_eq!(test, [1, 3, 5, 7, 9]);
# }
```
## Collecting into a `Vec`
```rust
# #[cfg(feature = "proc_macro")]
# fn feature_gate() {
# use genawaiter::{sync::gen, yield_};
#
# let odds_under_ten = gen!({
# for n in (1..).step_by(2).take_while(|&n| n < 10) { yield_!(n); }
# });
#
let xs: Vec<_> = odds_under_ten.into_iter().collect();
assert_eq!(xs, [1, 3, 5, 7, 9]);
# }
```
## A generator is a closure
Like any closure, you can capture values from outer scopes.
```rust
# #[cfg(feature = "proc_macro")]
# fn feature_gate() {
# use genawaiter::{sync::gen, yield_, GeneratorState};
#
let two = 2;
let mut multiply = gen!({
yield_!(10 * two);
});
assert_eq!(multiply.resume(), GeneratorState::Yielded(20));
# }
```
## Using `resume()`
```rust
# #[cfg(feature = "proc_macro")]
# fn feature_gate() {
# use genawaiter::{sync::gen, yield_, GeneratorState};
#
# let mut odds_under_ten = gen!({
# for n in (1..).step_by(2).take_while(|&n| n < 10) { yield_!(n); }
# });
#
assert_eq!(odds_under_ten.resume(), GeneratorState::Yielded(1));
assert_eq!(odds_under_ten.resume(), GeneratorState::Yielded(3));
assert_eq!(odds_under_ten.resume(), GeneratorState::Yielded(5));
assert_eq!(odds_under_ten.resume(), GeneratorState::Yielded(7));
assert_eq!(odds_under_ten.resume(), GeneratorState::Yielded(9));
assert_eq!(odds_under_ten.resume(), GeneratorState::Complete(()));
# }
```
## Passing resume arguments
You can pass values into the generator.
Note that the first resume argument will be lost. This is because at the time the first
value is sent, there is no future being awaited inside the generator, so there is no
place the value could go where the generator could observe it.
```rust
# #[cfg(feature = "proc_macro")]
# fn feature_gate() {
# use genawaiter::{sync::gen, yield_};
#
let mut check_numbers = gen!({
let num = yield_!(());
assert_eq!(num, 1);
let num = yield_!(());
assert_eq!(num, 2);
});
check_numbers.resume_with(0);
check_numbers.resume_with(1);
check_numbers.resume_with(2);
# }
```
## Returning a completion value
You can return a completion value with a different type than the values that are
yielded.
```rust
# #[cfg(feature = "proc_macro")]
# fn feature_gate() {
# use genawaiter::{sync::gen, yield_, GeneratorState};
#
let mut numbers_then_string = gen!({
yield_!(10);
yield_!(20);
"done!"
});
assert_eq!(numbers_then_string.resume(), GeneratorState::Yielded(10));
assert_eq!(numbers_then_string.resume(), GeneratorState::Yielded(20));
assert_eq!(numbers_then_string.resume(), GeneratorState::Complete("done!"));
# }
```
## Defining a reusable producer function
```rust
# #[cfg(feature = "proc_macro")]
# fn feature_gate() {
# use genawaiter::{sync::{producer_fn, Gen}, yield_, GeneratorState};
#
#[producer_fn(u8)]
async fn produce() {
yield_!(10);
}
let mut gen = Gen::new(produce);
assert_eq!(gen.resume(), GeneratorState::Yielded(10));
# }
```
## Defining a reusable producer closure
```rust
# #[cfg(feature = "proc_macro")]
# fn feature_gate() {
# use genawaiter::{sync::Gen, yield_, GeneratorState};
use genawaiter::sync_producer as producer;
let produce = producer!({
yield_!(10);
});
let mut gen = Gen::new(produce);
assert_eq!(gen.resume(), GeneratorState::Yielded(10));
# }
```
## Using the low-level API
You can define an `async fn` directly, instead of relying on the `gen!` or `producer!`
macros.
```rust
use genawaiter::sync::{Co, Gen};
async fn producer(co: Co<i32>) {
let mut n = 1;
while n < 10 {
co.yield_(n).await;
n += 2;
}
}
let odds_under_ten = Gen::new(producer);
let result: Vec<_> = odds_under_ten.into_iter().collect();
assert_eq!(result, [1, 3, 5, 7, 9]);
```
## Using the low-level API with an async closure (nightly Rust only)
```ignore
# use genawaiter::{sync::Gen, GeneratorState};
#
let gen = Gen::new(async move |co| {
co.yield_(10).await;
co.yield_(20).await;
});
assert_eq!(gen.resume(), GeneratorState::Yielded(10));
assert_eq!(gen.resume(), GeneratorState::Yielded(20));
assert_eq!(gen.resume(), GeneratorState::Complete(()));
```
## Using the low-level API with an async <del>closure</del> faux·sure (for stable Rust)
```
# use genawaiter::{sync::Gen, GeneratorState};
#
let mut gen = Gen::new(|co| async move {
co.yield_(10).await;
co.yield_(20).await;
});
assert_eq!(gen.resume(), GeneratorState::Yielded(10));
assert_eq!(gen.resume(), GeneratorState::Yielded(20));
assert_eq!(gen.resume(), GeneratorState::Complete(()));
```
## Using the low-level API with function arguments
This is just ordinary Rust, nothing special.
```rust
# use genawaiter::{sync::{Co, Gen}, GeneratorState};
#
async fn multiples_of(num: i32, co: Co<i32>) {
let mut cur = num;
loop {
co.yield_(cur).await;
cur += num;
}
}
let mut gen = Gen::new(|co| multiples_of(10, co));
assert_eq!(gen.resume(), GeneratorState::Yielded(10));
assert_eq!(gen.resume(), GeneratorState::Yielded(20));
assert_eq!(gen.resume(), GeneratorState::Yielded(30));
```
*/
pub use crate::sync::{boxed::GenBoxed, engine::Co, generator::Gen};
/// Creates a generator.
///
/// This macro takes one argument, which is the body of the generator. It should
/// contain one or more calls to the [`yield_!`] macro.
///
/// # Examples
///
/// [_See the module-level docs for examples._](.)
#[cfg(feature = "proc_macro")]
pub use genawaiter_macro::sync_gen as gen;
/// Turns a function into a producer, which can then be used to create a
/// generator.
///
/// The body of the function should contain one or more [`yield_!`] expressions.
///
/// # Examples
///
/// [_See the module-level docs for examples._](.)
#[cfg(feature = "proc_macro")]
pub use genawaiter_proc_macro::sync_producer_fn as producer_fn;
mod boxed;
mod engine;
mod generator;
mod iterator;
#[cfg(feature = "futures03")]
mod stream;
#[cfg(feature = "nightly")]
#[cfg(test)]
mod nightly_tests;
#[cfg(test)]
mod tests {
use crate::{
sync::{Co, Gen},
testing::{DummyFuture, SlowFuture},
GeneratorState,
};
use futures::executor::block_on;
use std::{
cell::{Cell, RefCell},
future::Future,
};
async fn simple_producer(co: Co<i32>) -> &'static str {
co.yield_(10).await;
"done"
}
#[test]
fn function() {
let mut gen = Gen::new(simple_producer);
assert_eq!(gen.resume(), GeneratorState::Yielded(10));
assert_eq!(gen.resume(), GeneratorState::Complete("done"));
}
#[test]
fn simple_closure() {
async fn gen(i: i32, co: Co<i32>) -> &'static str {
co.yield_(i * 2).await;
"done"
}
let mut gen = Gen::new(|co| gen(5, co));
assert_eq!(gen.resume(), GeneratorState::Yielded(10));
assert_eq!(gen.resume(), GeneratorState::Complete("done"));
}
#[test]
fn resume_args() {
async fn gen(resumes: &RefCell<Vec<&str>>, co: Co<i32, &'static str>) {
let resume_arg = co.yield_(10).await;
resumes.borrow_mut().push(resume_arg);
let resume_arg = co.yield_(20).await;
resumes.borrow_mut().push(resume_arg);
}
let resumes = RefCell::new(Vec::new());
let mut gen = Gen::new(|co| gen(&resumes, co));
assert_eq!(*resumes.borrow(), &[] as &[&str]);
assert_eq!(gen.resume_with("ignored"), GeneratorState::Yielded(10));
assert_eq!(*resumes.borrow(), &[] as &[&str]);
assert_eq!(gen.resume_with("abc"), GeneratorState::Yielded(20));
assert_eq!(*resumes.borrow(), &["abc"]);
assert_eq!(gen.resume_with("def"), GeneratorState::Complete(()));
assert_eq!(*resumes.borrow(), &["abc", "def"]);
}
#[test]
fn async_resume() {
async fn produce(co: Co<i32>) {
SlowFuture::new().await;
co.yield_(10).await;
SlowFuture::new().await;
co.yield_(20).await;
}
async fn run_test() {
let mut gen = Gen::new(produce);
let x = gen.async_resume().await;
assert_eq!(x, GeneratorState::Yielded(10));
let x = gen.async_resume().await;
assert_eq!(x, GeneratorState::Yielded(20));
let x = gen.async_resume().await;
assert_eq!(x, GeneratorState::Complete(()));
}
block_on(run_test());
}
#[test]
#[should_panic(expected = "non-async method")]
fn forbidden_await_helpful_message() {
async fn wrong(_: Co<i32>) {
DummyFuture.await;
}
let mut gen = Gen::new(wrong);
gen.resume();
}
#[test]
#[should_panic(expected = "Co::yield_")]
fn multiple_yield_helpful_message() {
async fn wrong(co: Co<i32>) {
let _ = co.yield_(10);
let _ = co.yield_(20);
}
let mut gen = Gen::new(wrong);
gen.resume();
}
#[test]
#[should_panic = "should have been dropped by now"]
fn escaped_co_helpful_message() {
async fn shenanigans(co: Co<i32>) -> Co<i32> {
co
}
let mut gen = Gen::new(shenanigans);
let escaped_co = match gen.resume() {
GeneratorState::Yielded(_) => panic!(),
GeneratorState::Complete(co) => co,
};
let _ = escaped_co.yield_(10);
}
/// This tests in a roundabout way that the `Gen` object can be moved. This
/// should happen without moving the allocations inside so we don't
/// segfault.
#[test]
fn gen_is_movable() {
#[inline(never)]
async fn produce(addrs: &mut Vec<*const i32>, co: Co<i32>) -> &'static str {
let sentinel: Cell<i32> = Cell::new(0x8001);
// If the future state moved, this reference would become invalid, and
// hilarity would ensue.
let sentinel_ref: &Cell<i32> = &sentinel;
// Test a few times that `sentinel` and `sentinel_ref` point to the same
// data.
assert_eq!(sentinel.get(), 0x8001);
sentinel_ref.set(0x8002);
assert_eq!(sentinel.get(), 0x8002);
addrs.push(sentinel.as_ptr());
co.yield_(10).await;
assert_eq!(sentinel.get(), 0x8002);
sentinel_ref.set(0x8003);
assert_eq!(sentinel.get(), 0x8003);
addrs.push(sentinel.as_ptr());
co.yield_(20).await;
assert_eq!(sentinel.get(), 0x8003);
sentinel_ref.set(0x8004);
assert_eq!(sentinel.get(), 0x8004);
addrs.push(sentinel.as_ptr());
"done"
}
/// Create a generator, resume it once (so `sentinel_ref` gets
/// initialized), and then move it out of the function.
fn create_generator(
addrs: &mut Vec<*const i32>,
) -> Gen<i32, (), impl Future<Output = &'static str> + '_> {
let mut gen = Gen::new(move |co| produce(addrs, co));
assert_eq!(gen.resume(), GeneratorState::Yielded(10));
gen
}
let mut addrs = Vec::new();
let mut gen = create_generator(&mut addrs);
assert_eq!(gen.resume(), GeneratorState::Yielded(20));
assert_eq!(gen.resume(), GeneratorState::Complete("done"));
drop(gen);
assert!(addrs.iter().all(|&p| p == addrs[0]));
}
}