1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
//! Radix-generic, optimized, string-to-integer conversion routines.
//!
//! These routines are highly optimized: they use various optimizations
//! to read multiple digits at-a-time with less multiplication instructions,
//! as well as other optimizations to avoid unnecessary compile-time branching.
//!
//! See [Algorithm.md](/docs/Algorithm.md) for a more detailed description of
//! the algorithm choice here. See [Benchmarks.md](/docs/Benchmarks.md) for
//! recent benchmark data.
#![cfg(not(feature = "compact"))]
#![doc(hidden)]
use crate::shared::is_overflow;
use lexical_util::digit::char_to_digit_const;
use lexical_util::format::NumberFormat;
use lexical_util::iterator::{AsBytes, BytesIter};
use lexical_util::num::{as_cast, Integer, UnsignedInteger};
use lexical_util::result::Result;
use lexical_util::step::min_step;
// ALGORITHM
/// Check if we can try to parse 8 digits.
macro_rules! can_try_parse_multidigits {
($iter:expr, $radix:expr) => {
$iter.is_contiguous() && (cfg!(not(feature = "power-of-two")) || $radix <= 10)
};
}
/// Parse 8-digits at a time.
///
/// See the algorithm description in `parse_8digits`.
/// This reduces the number of required multiplications
/// from 8 to 4.
#[rustfmt::skip]
macro_rules! parse_8digits {
(
$value:ident,
$iter:ident,
$format:ident,
$t:ident
) => {{
let radix: $t = as_cast(NumberFormat::<{ $format }>::MANTISSA_RADIX);
let radix2: $t = radix.wrapping_mul(radix);
let radix4: $t = radix2.wrapping_mul(radix2);
let radix8: $t = radix4.wrapping_mul(radix4);
// Try our fast, 8-digit at a time optimizations.
while let Some(val8) = try_parse_8digits::<$t, _, $format>(&mut $iter) {
$value = $value.wrapping_mul(radix8);
$value = $value.wrapping_add(val8);
}
}};
}
/// Parse 4-digits at a time.
///
/// See the algorithm description in `parse_4digits`.
/// This reduces the number of required multiplications
/// from 4 to 3.
#[rustfmt::skip]
macro_rules! parse_4digits {
(
$value:ident,
$iter:ident,
$format:ident,
$t:ident
) => {{
let radix: $t = as_cast(NumberFormat::<{ $format }>::MANTISSA_RADIX);
let radix2: $t = radix.wrapping_mul(radix);
let radix4: $t = radix2.wrapping_mul(radix2);
// Try our fast, 4-digit at a time optimizations.
while let Some(val4) = try_parse_4digits::<$t, _, $format>(&mut $iter) {
$value = $value.wrapping_mul(radix4);
$value = $value.wrapping_add(val4);
}
}};
}
/// Parse digits for a positive or negative value.
/// Optimized for operations with machine integers.
#[rustfmt::skip]
macro_rules! parse_digits {
(
$value:ident,
$iter:ident,
$format:ident,
$is_negative:ident,
$start_index:ident,
$t:ident,
$u:ident,
$invalid_digit:ident
) => {{
// WARNING:
// Performance is heavily dependent on the amount of branching.
// We therefore optimize for worst cases only to a certain extent:
// that is, since most integers aren't randomly distributed, but
// are more likely to be smaller values, we need to avoid overbranching
// to ensure small digit parsing isn't impacted too much. We therefore
// only enable 4-digit **or** 8-digit optimizations, but not both.
// If not, the two branch passes kill performance for small 64-bit
// and 128-bit values.
//
// However, for signed integers, the increased amount of branching
// makes these multi-digit optimizations not worthwhile. For large
// 64-bit, signed integers, the performance benefit is ~23% faster.
// However, the performance penalty for smaller, more common integers
// is ~50%. Therefore, these optimizations are not worth the penalty.
//
// For unsigned and 128-bit signed integers, the performance penalties
// are minimal and the performance gains are substantial, so re-enable
// the optimizations.
//
// DO NOT MAKE CHANGES without monitoring the resulting benchmarks,
// or performance could greatly be impacted.
let radix = NumberFormat::<{ $format }>::MANTISSA_RADIX;
// Optimizations for reading 8-digits at a time.
// Makes no sense to do 8 digits at a time for 32-bit values,
// since it can only hold 8 digits for base 10.
if <$t>::BITS == 128 && can_try_parse_multidigits!($iter, radix) {
parse_8digits!($value, $iter, $format, $u);
}
if <$t>::BITS == 64 && can_try_parse_multidigits!($iter, radix) && !<$t>::IS_SIGNED {
parse_8digits!($value, $iter, $format, $u);
}
// Optimizations for reading 4-digits at a time.
// 36^4 is larger than a 16-bit integer. Likewise, 10^4 is almost
// the limit of u16, so it's not worth it.
if <$t>::BITS == 32 && can_try_parse_multidigits!($iter, radix) && !<$t>::IS_SIGNED {
parse_4digits!($value, $iter, $format, $u);
}
parse_1digit!($value, $iter, $format, $is_negative, $start_index, $t, $u, $invalid_digit)
}};
}
/// Algorithm for the complete parser.
#[inline]
pub fn algorithm_complete<T, Unsigned, const FORMAT: u128>(bytes: &[u8]) -> Result<T>
where
T: Integer,
Unsigned: UnsignedInteger,
{
algorithm!(bytes, FORMAT, T, Unsigned, parse_digits, invalid_digit_complete, into_ok_complete)
}
/// Algorithm for the partial parser.
#[inline]
pub fn algorithm_partial<T, Unsigned, const FORMAT: u128>(bytes: &[u8]) -> Result<(T, usize)>
where
T: Integer,
Unsigned: UnsignedInteger,
{
algorithm!(bytes, FORMAT, T, Unsigned, parse_digits, invalid_digit_partial, into_ok_partial)
}
// DIGIT OPTIMIZATIONS
/// Determine if 4 bytes, read raw from bytes, are 4 digits for the radix.
#[inline]
pub fn is_4digits<const FORMAT: u128>(v: u32) -> bool {
let radix = NumberFormat::<{ FORMAT }>::MANTISSA_RADIX;
debug_assert!(radix <= 10);
// We want to have a wrapping add and sub such that only values from the
// range `[0x30, 0x39]` (or narrower for custom radixes) will not
// overflow into the high bit. This means that the value needs to overflow
// into into `0x80` if the digit is 1 above, or `0x46` for the value `0x39`.
// Likewise, we only valid for `[0x30, 0x38]` for radix 8, so we need
// `0x47`.
let add = 0x46 + 10 - radix;
let add = add + (add << 8) + (add << 16) + (add << 24);
// This aims to underflow if anything is below the min digit: if we have any
// values under `0x30`, then this underflows and wraps into the high bit.
let sub = 0x3030_3030;
let a = v.wrapping_add(add);
let b = v.wrapping_sub(sub);
(a | b) & 0x8080_8080 == 0
}
/// Parse 4 bytes read from bytes into 4 digits.
#[inline]
pub fn parse_4digits<const FORMAT: u128>(mut v: u32) -> u32 {
let radix = NumberFormat::<{ FORMAT }>::MANTISSA_RADIX;
debug_assert!(radix <= 10);
// Normalize our digits to the range `[0, 9]`.
v -= 0x3030_3030;
// Scale digits in 0 <= Nn <= 99.
v = (v * radix) + (v >> 8);
// Scale digits in 0 <= Nnnn <= 9999.
v = ((v & 0x0000007f) * radix * radix) + ((v >> 16) & 0x0000007f);
v
}
/// Use a fast-path optimization, where we attempt to parse 4 digits at a time.
/// This reduces the number of multiplications necessary to 2, instead of 4.
///
/// This approach is described in full here:
/// <https://johnnylee-sde.github.io/Fast-numeric-string-to-int/>
#[inline]
pub fn try_parse_4digits<'a, T, Iter, const FORMAT: u128>(iter: &mut Iter) -> Option<T>
where
T: Integer,
Iter: BytesIter<'a>,
{
// Can't do fast optimizations with radixes larger than 10, since
// we no longer have a contiguous ASCII block. Likewise, cannot
// use non-contiguous iterators.
debug_assert!(NumberFormat::<{ FORMAT }>::MANTISSA_RADIX <= 10);
debug_assert!(Iter::IS_CONTIGUOUS);
// Read our digits, validate the input, and check from there.
let bytes = u32::from_le(iter.read::<u32>()?);
if is_4digits::<FORMAT>(bytes) {
// SAFETY: safe since we have at least 4 bytes in the buffer.
unsafe { iter.step_by_unchecked(4) };
Some(T::as_cast(parse_4digits::<FORMAT>(bytes)))
} else {
None
}
}
/// Determine if 8 bytes, read raw from bytes, are 8 digits for the radix.
/// See `is_4digits` for the algorithm description.
#[inline]
pub fn is_8digits<const FORMAT: u128>(v: u64) -> bool {
let radix = NumberFormat::<{ FORMAT }>::MANTISSA_RADIX;
debug_assert!(radix <= 10);
let add = 0x46 + 10 - radix;
let add = add + (add << 8) + (add << 16) + (add << 24);
let add = (add as u64) | ((add as u64) << 32);
// This aims to underflow if anything is below the min digit: if we have any
// values under `0x30`, then this underflows and wraps into the high bit.
let sub = 0x3030_3030_3030_3030;
let a = v.wrapping_add(add);
let b = v.wrapping_sub(sub);
(a | b) & 0x8080_8080_8080_8080 == 0
}
/// Parse 8 bytes read from bytes into 8 digits.
/// Credit for this goes to @aqrit, which further optimizes the
/// optimization described by Johnny Lee above.
#[inline]
pub fn parse_8digits<const FORMAT: u128>(mut v: u64) -> u64 {
let radix = NumberFormat::<{ FORMAT }>::MANTISSA_RADIX as u64;
debug_assert!(radix <= 10);
// Create our masks. Assume the optimizer will do this at compile time.
// It seems like an optimizing compiler **will** do this, so we
// should be safe.
let radix2 = radix * radix;
let radix4 = radix2 * radix2;
let radix6 = radix2 * radix4;
let mask = 0x0000_00FF_0000_00FFu64;
let mul1 = radix2 + (radix6 << 32);
let mul2 = 1 + (radix4 << 32);
// Normalize our digits to the base.
v -= 0x3030_3030_3030_3030;
// Scale digits in 0 <= Nn <= 99.
v = (v * radix) + (v >> 8);
let v1 = (v & mask).wrapping_mul(mul1);
let v2 = ((v >> 16) & mask).wrapping_mul(mul2);
((v1.wrapping_add(v2) >> 32) as u32) as u64
}
/// Use a fast-path optimization, where we attempt to parse 8 digits at a time.
/// This reduces the number of multiplications necessary to 3, instead of 8.
#[inline]
pub fn try_parse_8digits<'a, T, Iter, const FORMAT: u128>(iter: &mut Iter) -> Option<T>
where
T: Integer,
Iter: BytesIter<'a>,
{
// Can't do fast optimizations with radixes larger than 10, since
// we no longer have a contiguous ASCII block. Likewise, cannot
// use non-contiguous iterators.
debug_assert!(NumberFormat::<{ FORMAT }>::MANTISSA_RADIX <= 10);
debug_assert!(Iter::IS_CONTIGUOUS);
// Read our digits, validate the input, and check from there.
let bytes = u64::from_le(iter.read::<u64>()?);
if is_8digits::<FORMAT>(bytes) {
// SAFETY: safe since we have at least 8 bytes in the buffer.
unsafe { iter.step_by_unchecked(8) };
Some(T::as_cast(parse_8digits::<FORMAT>(bytes)))
} else {
None
}
}