Struct curve25519_dalek::scalar::Scalar
source · pub struct Scalar { /* private fields */ }
Expand description
The Scalar
struct holds an element of \(\mathbb Z / \ell\mathbb Z \).
Implementations§
source§impl Scalar
impl Scalar
sourcepub fn from_bytes_mod_order(bytes: [u8; 32]) -> Scalar
pub fn from_bytes_mod_order(bytes: [u8; 32]) -> Scalar
Construct a Scalar
by reducing a 256-bit little-endian integer
modulo the group order \( \ell \).
sourcepub fn from_bytes_mod_order_wide(input: &[u8; 64]) -> Scalar
pub fn from_bytes_mod_order_wide(input: &[u8; 64]) -> Scalar
Construct a Scalar
by reducing a 512-bit little-endian integer
modulo the group order \( \ell \).
sourcepub fn from_canonical_bytes(bytes: [u8; 32]) -> CtOption<Scalar>
pub fn from_canonical_bytes(bytes: [u8; 32]) -> CtOption<Scalar>
Attempt to construct a Scalar
from a canonical byte representation.
§Return
Some(s)
, wheres
is theScalar
corresponding tobytes
, ifbytes
is a canonical byte representation modulo the group order \( \ell \);None
ifbytes
is not a canonical byte representation.
source§impl Scalar
impl Scalar
sourcepub fn hash_from_bytes<D>(input: &[u8]) -> Scalar
pub fn hash_from_bytes<D>(input: &[u8]) -> Scalar
Hash a slice of bytes into a scalar.
Takes a type parameter D
, which is any Digest
producing 64
bytes (512 bits) of output.
Convenience wrapper around from_hash
.
§Example
use sha2::Sha512;
let msg = "To really appreciate architecture, you may even need to commit a murder";
let s = Scalar::hash_from_bytes::<Sha512>(msg.as_bytes());
sourcepub fn from_hash<D>(hash: D) -> Scalar
pub fn from_hash<D>(hash: D) -> Scalar
Construct a scalar from an existing Digest
instance.
Use this instead of hash_from_bytes
if it is more convenient
to stream data into the Digest
than to pass a single byte
slice.
§Example
use curve25519_dalek::digest::Update;
use sha2::Digest;
use sha2::Sha512;
let mut h = Sha512::new()
.chain("To really appreciate architecture, you may even need to commit a murder.")
.chain("While the programs used for The Manhattan Transcripts are of the most extreme")
.chain("nature, they also parallel the most common formula plot: the archetype of")
.chain("murder. Other phantasms were occasionally used to underline the fact that")
.chain("perhaps all architecture, rather than being about functional standards, is")
.chain("about love and death.");
let s = Scalar::from_hash(h);
println!("{:?}", s.to_bytes());
assert_eq!(
s.to_bytes(),
[ 21, 88, 208, 252, 63, 122, 210, 152,
154, 38, 15, 23, 16, 167, 80, 150,
192, 221, 77, 226, 62, 25, 224, 148,
239, 48, 176, 10, 185, 69, 168, 11, ],
);
sourcepub const fn to_bytes(&self) -> [u8; 32]
pub const fn to_bytes(&self) -> [u8; 32]
Convert this Scalar
to its underlying sequence of bytes.
§Example
use curve25519_dalek::scalar::Scalar;
let s: Scalar = Scalar::ZERO;
assert!(s.to_bytes() == [0u8; 32]);
sourcepub const fn as_bytes(&self) -> &[u8; 32]
pub const fn as_bytes(&self) -> &[u8; 32]
View the little-endian byte encoding of the integer representing this Scalar.
§Example
use curve25519_dalek::scalar::Scalar;
let s: Scalar = Scalar::ZERO;
assert!(s.as_bytes() == &[0u8; 32]);
sourcepub fn invert(&self) -> Scalar
pub fn invert(&self) -> Scalar
Given a nonzero Scalar
, compute its multiplicative inverse.
§Warning
self
MUST be nonzero. If you cannot
prove that this is the case, you SHOULD NOT USE THIS
FUNCTION.
§Returns
The multiplicative inverse of the this Scalar
.
§Example
use curve25519_dalek::scalar::Scalar;
// x = 2238329342913194256032495932344128051776374960164957527413114840482143558222
let X: Scalar = Scalar::from_bytes_mod_order([
0x4e, 0x5a, 0xb4, 0x34, 0x5d, 0x47, 0x08, 0x84,
0x59, 0x13, 0xb4, 0x64, 0x1b, 0xc2, 0x7d, 0x52,
0x52, 0xa5, 0x85, 0x10, 0x1b, 0xcc, 0x42, 0x44,
0xd4, 0x49, 0xf4, 0xa8, 0x79, 0xd9, 0xf2, 0x04,
]);
// 1/x = 6859937278830797291664592131120606308688036382723378951768035303146619657244
let XINV: Scalar = Scalar::from_bytes_mod_order([
0x1c, 0xdc, 0x17, 0xfc, 0xe0, 0xe9, 0xa5, 0xbb,
0xd9, 0x24, 0x7e, 0x56, 0xbb, 0x01, 0x63, 0x47,
0xbb, 0xba, 0x31, 0xed, 0xd5, 0xa9, 0xbb, 0x96,
0xd5, 0x0b, 0xcd, 0x7a, 0x3f, 0x96, 0x2a, 0x0f,
]);
let inv_X: Scalar = X.invert();
assert!(XINV == inv_X);
let should_be_one: Scalar = &inv_X * &X;
assert!(should_be_one == Scalar::ONE);
sourcepub fn batch_invert(inputs: &mut [Scalar]) -> Scalar
pub fn batch_invert(inputs: &mut [Scalar]) -> Scalar
Given a slice of nonzero (possibly secret) Scalar
s,
compute their inverses in a batch.
§Return
Each element of inputs
is replaced by its inverse.
The product of all inverses is returned.
§Warning
All input Scalars
MUST be nonzero. If you cannot
prove that this is the case, you SHOULD NOT USE THIS
FUNCTION.
§Example
let mut scalars = [
Scalar::from(3u64),
Scalar::from(5u64),
Scalar::from(7u64),
Scalar::from(11u64),
];
let allinv = Scalar::batch_invert(&mut scalars);
assert_eq!(allinv, Scalar::from(3*5*7*11u64).invert());
assert_eq!(scalars[0], Scalar::from(3u64).invert());
assert_eq!(scalars[1], Scalar::from(5u64).invert());
assert_eq!(scalars[2], Scalar::from(7u64).invert());
assert_eq!(scalars[3], Scalar::from(11u64).invert());
Trait Implementations§
source§impl<'b> AddAssign<&'b Scalar> for Scalar
impl<'b> AddAssign<&'b Scalar> for Scalar
source§fn add_assign(&mut self, _rhs: &'b Scalar)
fn add_assign(&mut self, _rhs: &'b Scalar)
+=
operation. Read moresource§impl AddAssign for Scalar
impl AddAssign for Scalar
source§fn add_assign(&mut self, rhs: Scalar)
fn add_assign(&mut self, rhs: Scalar)
+=
operation. Read moresource§impl ConditionallySelectable for Scalar
impl ConditionallySelectable for Scalar
source§impl ConstantTimeEq for Scalar
impl ConstantTimeEq for Scalar
source§impl From<u64> for Scalar
impl From<u64> for Scalar
source§fn from(x: u64) -> Scalar
fn from(x: u64) -> Scalar
Construct a scalar from the given u64
.
§Inputs
An u64
to convert to a Scalar
.
§Returns
A Scalar
corresponding to the input u64
.
§Example
use curve25519_dalek::scalar::Scalar;
let fourtytwo = Scalar::from(42u64);
let six = Scalar::from(6u64);
let seven = Scalar::from(7u64);
assert!(fourtytwo == six * seven);
source§impl<'a, 'b> Mul<&'a EdwardsBasepointTable> for &'b Scalar
impl<'a, 'b> Mul<&'a EdwardsBasepointTable> for &'b Scalar
source§fn mul(self, basepoint_table: &'a EdwardsBasepointTable) -> EdwardsPoint
fn mul(self, basepoint_table: &'a EdwardsBasepointTable) -> EdwardsPoint
Construct an EdwardsPoint
from a Scalar
\(a\) by
computing the multiple \(aB\) of this basepoint \(B\).
§type Output = EdwardsPoint
type Output = EdwardsPoint
*
operator.source§impl<'a, 'b> Mul<&'a EdwardsBasepointTableRadix128> for &'b Scalar
impl<'a, 'b> Mul<&'a EdwardsBasepointTableRadix128> for &'b Scalar
source§fn mul(self, basepoint_table: &'a EdwardsBasepointTableRadix128) -> EdwardsPoint
fn mul(self, basepoint_table: &'a EdwardsBasepointTableRadix128) -> EdwardsPoint
Construct an EdwardsPoint
from a Scalar
\(a\) by
computing the multiple \(aB\) of this basepoint \(B\).
§type Output = EdwardsPoint
type Output = EdwardsPoint
*
operator.source§impl<'a, 'b> Mul<&'a EdwardsBasepointTableRadix256> for &'b Scalar
impl<'a, 'b> Mul<&'a EdwardsBasepointTableRadix256> for &'b Scalar
source§fn mul(self, basepoint_table: &'a EdwardsBasepointTableRadix256) -> EdwardsPoint
fn mul(self, basepoint_table: &'a EdwardsBasepointTableRadix256) -> EdwardsPoint
Construct an EdwardsPoint
from a Scalar
\(a\) by
computing the multiple \(aB\) of this basepoint \(B\).
§type Output = EdwardsPoint
type Output = EdwardsPoint
*
operator.source§impl<'a, 'b> Mul<&'a EdwardsBasepointTableRadix32> for &'b Scalar
impl<'a, 'b> Mul<&'a EdwardsBasepointTableRadix32> for &'b Scalar
source§fn mul(self, basepoint_table: &'a EdwardsBasepointTableRadix32) -> EdwardsPoint
fn mul(self, basepoint_table: &'a EdwardsBasepointTableRadix32) -> EdwardsPoint
Construct an EdwardsPoint
from a Scalar
\(a\) by
computing the multiple \(aB\) of this basepoint \(B\).
§type Output = EdwardsPoint
type Output = EdwardsPoint
*
operator.source§impl<'a, 'b> Mul<&'a EdwardsBasepointTableRadix64> for &'b Scalar
impl<'a, 'b> Mul<&'a EdwardsBasepointTableRadix64> for &'b Scalar
source§fn mul(self, basepoint_table: &'a EdwardsBasepointTableRadix64) -> EdwardsPoint
fn mul(self, basepoint_table: &'a EdwardsBasepointTableRadix64) -> EdwardsPoint
Construct an EdwardsPoint
from a Scalar
\(a\) by
computing the multiple \(aB\) of this basepoint \(B\).
§type Output = EdwardsPoint
type Output = EdwardsPoint
*
operator.source§impl<'a, 'b> Mul<&'b EdwardsPoint> for &'a Scalar
impl<'a, 'b> Mul<&'b EdwardsPoint> for &'a Scalar
source§fn mul(self, point: &'b EdwardsPoint) -> EdwardsPoint
fn mul(self, point: &'b EdwardsPoint) -> EdwardsPoint
Scalar multiplication: compute scalar * self
.
For scalar multiplication of a basepoint,
EdwardsBasepointTable
is approximately 4x faster.
§type Output = EdwardsPoint
type Output = EdwardsPoint
*
operator.source§impl<'b> Mul<&'b EdwardsPoint> for Scalar
impl<'b> Mul<&'b EdwardsPoint> for Scalar
§type Output = EdwardsPoint
type Output = EdwardsPoint
*
operator.source§fn mul(self, rhs: &'b EdwardsPoint) -> EdwardsPoint
fn mul(self, rhs: &'b EdwardsPoint) -> EdwardsPoint
*
operation. Read moresource§impl Mul<&MontgomeryPoint> for &Scalar
impl Mul<&MontgomeryPoint> for &Scalar
§type Output = MontgomeryPoint
type Output = MontgomeryPoint
*
operator.source§fn mul(self, point: &MontgomeryPoint) -> MontgomeryPoint
fn mul(self, point: &MontgomeryPoint) -> MontgomeryPoint
*
operation. Read moresource§impl<'b> Mul<&'b MontgomeryPoint> for Scalar
impl<'b> Mul<&'b MontgomeryPoint> for Scalar
§type Output = MontgomeryPoint
type Output = MontgomeryPoint
*
operator.source§fn mul(self, rhs: &'b MontgomeryPoint) -> MontgomeryPoint
fn mul(self, rhs: &'b MontgomeryPoint) -> MontgomeryPoint
*
operation. Read moresource§impl<'a, 'b> Mul<&'a RistrettoBasepointTable> for &'b Scalar
impl<'a, 'b> Mul<&'a RistrettoBasepointTable> for &'b Scalar
§type Output = RistrettoPoint
type Output = RistrettoPoint
*
operator.source§fn mul(self, basepoint_table: &'a RistrettoBasepointTable) -> RistrettoPoint
fn mul(self, basepoint_table: &'a RistrettoBasepointTable) -> RistrettoPoint
*
operation. Read moresource§impl<'a, 'b> Mul<&'b RistrettoPoint> for &'a Scalar
impl<'a, 'b> Mul<&'b RistrettoPoint> for &'a Scalar
source§fn mul(self, point: &'b RistrettoPoint) -> RistrettoPoint
fn mul(self, point: &'b RistrettoPoint) -> RistrettoPoint
Scalar multiplication: compute self * scalar
.
§type Output = RistrettoPoint
type Output = RistrettoPoint
*
operator.source§impl<'b> Mul<&'b RistrettoPoint> for Scalar
impl<'b> Mul<&'b RistrettoPoint> for Scalar
§type Output = RistrettoPoint
type Output = RistrettoPoint
*
operator.source§fn mul(self, rhs: &'b RistrettoPoint) -> RistrettoPoint
fn mul(self, rhs: &'b RistrettoPoint) -> RistrettoPoint
*
operation. Read moresource§impl<'a, 'b> Mul<&'b Scalar> for &'a EdwardsBasepointTable
impl<'a, 'b> Mul<&'b Scalar> for &'a EdwardsBasepointTable
source§fn mul(self, scalar: &'b Scalar) -> EdwardsPoint
fn mul(self, scalar: &'b Scalar) -> EdwardsPoint
Construct an EdwardsPoint
from a Scalar
\(a\) by
computing the multiple \(aB\) of this basepoint \(B\).
§type Output = EdwardsPoint
type Output = EdwardsPoint
*
operator.source§impl<'a, 'b> Mul<&'b Scalar> for &'a EdwardsBasepointTableRadix128
impl<'a, 'b> Mul<&'b Scalar> for &'a EdwardsBasepointTableRadix128
source§fn mul(self, scalar: &'b Scalar) -> EdwardsPoint
fn mul(self, scalar: &'b Scalar) -> EdwardsPoint
Construct an EdwardsPoint
from a Scalar
\(a\) by
computing the multiple \(aB\) of this basepoint \(B\).
§type Output = EdwardsPoint
type Output = EdwardsPoint
*
operator.source§impl<'a, 'b> Mul<&'b Scalar> for &'a EdwardsBasepointTableRadix256
impl<'a, 'b> Mul<&'b Scalar> for &'a EdwardsBasepointTableRadix256
source§fn mul(self, scalar: &'b Scalar) -> EdwardsPoint
fn mul(self, scalar: &'b Scalar) -> EdwardsPoint
Construct an EdwardsPoint
from a Scalar
\(a\) by
computing the multiple \(aB\) of this basepoint \(B\).
§type Output = EdwardsPoint
type Output = EdwardsPoint
*
operator.source§impl<'a, 'b> Mul<&'b Scalar> for &'a EdwardsBasepointTableRadix32
impl<'a, 'b> Mul<&'b Scalar> for &'a EdwardsBasepointTableRadix32
source§fn mul(self, scalar: &'b Scalar) -> EdwardsPoint
fn mul(self, scalar: &'b Scalar) -> EdwardsPoint
Construct an EdwardsPoint
from a Scalar
\(a\) by
computing the multiple \(aB\) of this basepoint \(B\).
§type Output = EdwardsPoint
type Output = EdwardsPoint
*
operator.source§impl<'a, 'b> Mul<&'b Scalar> for &'a EdwardsBasepointTableRadix64
impl<'a, 'b> Mul<&'b Scalar> for &'a EdwardsBasepointTableRadix64
source§fn mul(self, scalar: &'b Scalar) -> EdwardsPoint
fn mul(self, scalar: &'b Scalar) -> EdwardsPoint
Construct an EdwardsPoint
from a Scalar
\(a\) by
computing the multiple \(aB\) of this basepoint \(B\).
§type Output = EdwardsPoint
type Output = EdwardsPoint
*
operator.source§impl<'a, 'b> Mul<&'b Scalar> for &'a EdwardsPoint
impl<'a, 'b> Mul<&'b Scalar> for &'a EdwardsPoint
source§fn mul(self, scalar: &'b Scalar) -> EdwardsPoint
fn mul(self, scalar: &'b Scalar) -> EdwardsPoint
Scalar multiplication: compute scalar * self
.
For scalar multiplication of a basepoint,
EdwardsBasepointTable
is approximately 4x faster.
§type Output = EdwardsPoint
type Output = EdwardsPoint
*
operator.source§impl Mul<&Scalar> for &MontgomeryPoint
impl Mul<&Scalar> for &MontgomeryPoint
Multiply this MontgomeryPoint
by a Scalar
.
source§fn mul(self, scalar: &Scalar) -> MontgomeryPoint
fn mul(self, scalar: &Scalar) -> MontgomeryPoint
Given self
\( = u_0(P) \), and a Scalar
\(n\), return \( u_0([n]P) \)
§type Output = MontgomeryPoint
type Output = MontgomeryPoint
*
operator.source§impl<'a, 'b> Mul<&'b Scalar> for &'a RistrettoBasepointTable
impl<'a, 'b> Mul<&'b Scalar> for &'a RistrettoBasepointTable
§type Output = RistrettoPoint
type Output = RistrettoPoint
*
operator.source§impl<'a, 'b> Mul<&'b Scalar> for &'a RistrettoPoint
impl<'a, 'b> Mul<&'b Scalar> for &'a RistrettoPoint
source§fn mul(self, scalar: &'b Scalar) -> RistrettoPoint
fn mul(self, scalar: &'b Scalar) -> RistrettoPoint
Scalar multiplication: compute scalar * self
.
§type Output = RistrettoPoint
type Output = RistrettoPoint
*
operator.source§impl<'b> Mul<&'b Scalar> for EdwardsPoint
impl<'b> Mul<&'b Scalar> for EdwardsPoint
§type Output = EdwardsPoint
type Output = EdwardsPoint
*
operator.source§impl<'b> Mul<&'b Scalar> for MontgomeryPoint
impl<'b> Mul<&'b Scalar> for MontgomeryPoint
§type Output = MontgomeryPoint
type Output = MontgomeryPoint
*
operator.source§impl<'b> Mul<&'b Scalar> for RistrettoPoint
impl<'b> Mul<&'b Scalar> for RistrettoPoint
§type Output = RistrettoPoint
type Output = RistrettoPoint
*
operator.source§impl<'a> Mul<EdwardsPoint> for &'a Scalar
impl<'a> Mul<EdwardsPoint> for &'a Scalar
§type Output = EdwardsPoint
type Output = EdwardsPoint
*
operator.source§fn mul(self, rhs: EdwardsPoint) -> EdwardsPoint
fn mul(self, rhs: EdwardsPoint) -> EdwardsPoint
*
operation. Read moresource§impl Mul<EdwardsPoint> for Scalar
impl Mul<EdwardsPoint> for Scalar
§type Output = EdwardsPoint
type Output = EdwardsPoint
*
operator.source§fn mul(self, rhs: EdwardsPoint) -> EdwardsPoint
fn mul(self, rhs: EdwardsPoint) -> EdwardsPoint
*
operation. Read moresource§impl<'a> Mul<MontgomeryPoint> for &'a Scalar
impl<'a> Mul<MontgomeryPoint> for &'a Scalar
§type Output = MontgomeryPoint
type Output = MontgomeryPoint
*
operator.source§fn mul(self, rhs: MontgomeryPoint) -> MontgomeryPoint
fn mul(self, rhs: MontgomeryPoint) -> MontgomeryPoint
*
operation. Read moresource§impl Mul<MontgomeryPoint> for Scalar
impl Mul<MontgomeryPoint> for Scalar
§type Output = MontgomeryPoint
type Output = MontgomeryPoint
*
operator.source§fn mul(self, rhs: MontgomeryPoint) -> MontgomeryPoint
fn mul(self, rhs: MontgomeryPoint) -> MontgomeryPoint
*
operation. Read moresource§impl<'a> Mul<RistrettoPoint> for &'a Scalar
impl<'a> Mul<RistrettoPoint> for &'a Scalar
§type Output = RistrettoPoint
type Output = RistrettoPoint
*
operator.source§fn mul(self, rhs: RistrettoPoint) -> RistrettoPoint
fn mul(self, rhs: RistrettoPoint) -> RistrettoPoint
*
operation. Read moresource§impl Mul<RistrettoPoint> for Scalar
impl Mul<RistrettoPoint> for Scalar
§type Output = RistrettoPoint
type Output = RistrettoPoint
*
operator.source§fn mul(self, rhs: RistrettoPoint) -> RistrettoPoint
fn mul(self, rhs: RistrettoPoint) -> RistrettoPoint
*
operation. Read moresource§impl<'a> Mul<Scalar> for &'a EdwardsPoint
impl<'a> Mul<Scalar> for &'a EdwardsPoint
§type Output = EdwardsPoint
type Output = EdwardsPoint
*
operator.source§impl<'a> Mul<Scalar> for &'a MontgomeryPoint
impl<'a> Mul<Scalar> for &'a MontgomeryPoint
§type Output = MontgomeryPoint
type Output = MontgomeryPoint
*
operator.source§impl<'a> Mul<Scalar> for &'a RistrettoPoint
impl<'a> Mul<Scalar> for &'a RistrettoPoint
§type Output = RistrettoPoint
type Output = RistrettoPoint
*
operator.source§impl Mul<Scalar> for EdwardsPoint
impl Mul<Scalar> for EdwardsPoint
§type Output = EdwardsPoint
type Output = EdwardsPoint
*
operator.source§impl Mul<Scalar> for MontgomeryPoint
impl Mul<Scalar> for MontgomeryPoint
§type Output = MontgomeryPoint
type Output = MontgomeryPoint
*
operator.source§impl Mul<Scalar> for RistrettoPoint
impl Mul<Scalar> for RistrettoPoint
§type Output = RistrettoPoint
type Output = RistrettoPoint
*
operator.source§impl<'b> MulAssign<&'b Scalar> for EdwardsPoint
impl<'b> MulAssign<&'b Scalar> for EdwardsPoint
source§fn mul_assign(&mut self, scalar: &'b Scalar)
fn mul_assign(&mut self, scalar: &'b Scalar)
*=
operation. Read moresource§impl MulAssign<&Scalar> for MontgomeryPoint
impl MulAssign<&Scalar> for MontgomeryPoint
source§fn mul_assign(&mut self, scalar: &Scalar)
fn mul_assign(&mut self, scalar: &Scalar)
*=
operation. Read moresource§impl<'b> MulAssign<&'b Scalar> for RistrettoPoint
impl<'b> MulAssign<&'b Scalar> for RistrettoPoint
source§fn mul_assign(&mut self, scalar: &'b Scalar)
fn mul_assign(&mut self, scalar: &'b Scalar)
*=
operation. Read moresource§impl<'b> MulAssign<&'b Scalar> for Scalar
impl<'b> MulAssign<&'b Scalar> for Scalar
source§fn mul_assign(&mut self, _rhs: &'b Scalar)
fn mul_assign(&mut self, _rhs: &'b Scalar)
*=
operation. Read moresource§impl MulAssign<Scalar> for EdwardsPoint
impl MulAssign<Scalar> for EdwardsPoint
source§fn mul_assign(&mut self, rhs: Scalar)
fn mul_assign(&mut self, rhs: Scalar)
*=
operation. Read moresource§impl MulAssign<Scalar> for MontgomeryPoint
impl MulAssign<Scalar> for MontgomeryPoint
source§fn mul_assign(&mut self, rhs: Scalar)
fn mul_assign(&mut self, rhs: Scalar)
*=
operation. Read moresource§impl MulAssign<Scalar> for RistrettoPoint
impl MulAssign<Scalar> for RistrettoPoint
source§fn mul_assign(&mut self, rhs: Scalar)
fn mul_assign(&mut self, rhs: Scalar)
*=
operation. Read moresource§impl MulAssign for Scalar
impl MulAssign for Scalar
source§fn mul_assign(&mut self, rhs: Scalar)
fn mul_assign(&mut self, rhs: Scalar)
*=
operation. Read moresource§impl PartialEq for Scalar
impl PartialEq for Scalar
source§impl<'b> SubAssign<&'b Scalar> for Scalar
impl<'b> SubAssign<&'b Scalar> for Scalar
source§fn sub_assign(&mut self, _rhs: &'b Scalar)
fn sub_assign(&mut self, _rhs: &'b Scalar)
-=
operation. Read moresource§impl SubAssign for Scalar
impl SubAssign for Scalar
source§fn sub_assign(&mut self, rhs: Scalar)
fn sub_assign(&mut self, rhs: Scalar)
-=
operation. Read moreimpl Copy for Scalar
impl Eq for Scalar
Auto Trait Implementations§
impl Freeze for Scalar
impl RefUnwindSafe for Scalar
impl Send for Scalar
impl Sync for Scalar
impl Unpin for Scalar
impl UnwindSafe for Scalar
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
source§default unsafe fn clone_to_uninit(&self, dst: *mut T)
default unsafe fn clone_to_uninit(&self, dst: *mut T)
clone_to_uninit
)source§impl<T> CloneToUninit for Twhere
T: Copy,
impl<T> CloneToUninit for Twhere
T: Copy,
source§unsafe fn clone_to_uninit(&self, dst: *mut T)
unsafe fn clone_to_uninit(&self, dst: *mut T)
clone_to_uninit
)